Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T17:14:19.515Z Has data issue: false hasContentIssue false

Optical simulation of colloidal photonic crystals with controllable size spheres of silica

Published online by Cambridge University Press:  20 August 2014

Anis Chaouachi*
Affiliation:
Useful Material Valorization Laboratory, National Center for Research in Materials Sciences, CNRSM, Technopole Borj Cédria, BP 73, 8027 Soliman, Tunisia
Chtourou Radhouane
Affiliation:
Laboratory of Photovoltaic, Research and Technology Center of Energy (CRTEn), Technopole Borj Cédria, BP 73, 8027 Soliman, Tunisia
Adel M’nif
Affiliation:
Useful Material Valorization Laboratory, National Center for Research in Materials Sciences, CNRSM, Technopole Borj Cédria, BP 73, 8027 Soliman, Tunisia
Ahmed Hichem Hamzaoui
Affiliation:
Useful Material Valorization Laboratory, National Center for Research in Materials Sciences, CNRSM, Technopole Borj Cédria, BP 73, 8027 Soliman, Tunisia
*
a e-mail: [email protected]
Get access

Abstract

In this work, optical properties of colloidal silica crystals are investigated theoretically. Numerical calculations are discussed and compared to experimental measurements. The existence of photonic band gap (or stop band) is inferred by analyzing the transmission spectra and dips of low transmission are typically correlated with photonic band gaps. The position of the main dip in simulated spectra matches the pseudo photonic band gap expected by the calculated photonic band gap diagram. Positions of stop band show a strong dependence on the diameter of silica spheres. We note that positions of the main dips deduced from simulated and measured spectra are very near. Good agreement between measured and theoretical results is then reported.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Soukoulis, C.M., Photonic Band Gap Materials (Kluwer Academic Publishers, Dordrecht, 1996)CrossRefGoogle Scholar
Hulteen, J.C., Treichel, D.A., Smith, M.T., Duval, M.L., Jensen, T.R., Duyne, R.P.V., J. Phys. Chem. B 103, 3854 (1999)CrossRef
Holtz, J.H., Asher, S.A., Nature 389, 829 (1997)
Zhong, Z.Y., Yin, Y.D., Gates, B., Xia, Y.N., Adv. Mater. 12, 206 (2000)3.0.CO;2-5>CrossRef
Yi, D.K., Kim, D.Y., Chem. Commun. 8, 982 (2003)CrossRef
Kulinowski, K.M., Jiang, P., Vaswani, H., Colvin, V.L., Adv. Mater. 12, 833 (2000)3.0.CO;2-X>CrossRef
Johnson, S.A., Ollivier, P.J., Mallouk, T.E., Science 283, 963 (1999)CrossRef
Zukalova, M., Zukal, A., Kavan, L., Nazeeruddin, M.K., Liska, P., Grätzel, M., Nano Lett. 5, 1789 (2005)CrossRef
Fu, Y., Jin, Z., Liu, Z., Liu, Y., Li, W., Mater. Lett. 62, 4286 (2008)CrossRef
Chaouachi, A., Chtourou, R., M’nif, A., Hamzaoui, A.H., Mater. Lett. 116, 420 (2014)CrossRef
Chiappini, A. et al., J. Non-Cryst. Solids 353, 674 (2007)CrossRef
Liu, K., Schmedakeb, T.A., Tsua, R., Phys. Lett. A 372, 4517 (2008)CrossRef
Balestreri, A., Scientifica Acta 1, 117 (2007)
Waterhouse, G.I.N., Waterland, M.R., Polyhedron 26, 356 (2007)CrossRef
Piret, F., Kwon, Y.-U., Su, B.-L., Chem. Phys. Lett. 472, 207 (2009)CrossRef