Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T15:03:31.754Z Has data issue: false hasContentIssue false

Numerical study and optimization of interstitial antennas for microwave ablation therapy

Published online by Cambridge University Press:  10 October 2014

Vyacheslav V. Komarov*
Affiliation:
Institute of Electronic and Mechanical Engineering, Yuri Gagarin State Technical University of Saratov, Saratov 410054, Russian Federation
*
Get access

Abstract

Electromagnetic and thermal characteristics of coaxial monopole antennas of 2.45 GHz and 24.125 GHz for microwave ablation of malignant tumors are investigated. Microwave heating processes in an interaction domain (biological tissue) are described by the coupled electromagnetic and heat transfer problem, which was solved numerically in the present study. Proposed applicators provide reducing of reflected power and localized distribution of temperature in the near-field zone. Different mathematical models are used to optimize the antennas sizes and simulate heating patterns.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dodd, G.D. et al., Radiology 267, 129 (2013)CrossRef
Hurter, W., Reinbold, F., Lorenz, W.J., IEEE Trans. Microwave Theor. Tech. 39, 1048 (1991)CrossRef
Sun, Y. et al., Eur. J. Radiol. 81, 553 (2012)CrossRef
Shi, W. et al., Eur. J. Radiol. 79, 214 (2011)CrossRef
Brace, C.L. et al., IEEE Trans. Microwave Theor. Tech. 53, 215 (2005)CrossRef
Cavagnaro, M. et al., IEEE Trans. Biomed. Eng. 58, 949 (2011)CrossRef
Prakash, P. et al., Phys. Med. Biol. 53, 1057 (2008)CrossRef
Longo, L. et al., IEEE Trans. Microwave Theor. Tech. 50, 82 (2003)
Rattanadecho, P., Keangin, P., Int. J. Heat Mass Transfer 58, 457 (2013)CrossRef
Karampatzakis, A. et al., Phys. Med. Biol. 58, 3191 (2013)CrossRef
Kim, D. et al., IEEE Trans. Microwave Theor. Tech. 57, 2581 (2009)CrossRef
Yoon, J. et al., Int. J. Cancer 129, 1970 (2011)CrossRef
Ji, Z., Brace, C.L., Phys. Med. Biol. 56, 5249 (2011)CrossRef
Lopresto, V. et al., Phys. Med. Biol. 57, 2309 (2012)CrossRef
QWED, “QuickWave-3D, QWED” (Warsaw, Poland, 2013) [Online], http//:www.qwed.com.pl
COMSOL Multiphysics V.4.3, 2013, http//:www.comsol.com
Kell, R.C., Greenham, A.C., Olds, G.C., J. Am. Ceram. Soc. 56, 352 (1973)CrossRef
Hardie, D., Sangster, A.J., Cronin, N.J., Electromagn. Biol. Med. 25, 29 (2006)CrossRef
Lepers, B., Ph.D. thesis, University of Bath, UK, 2008
Hasgall, P.A. et al., ITIS Database for thermal and electromagnetic parameters of biological tissues. Version 2.3, 2013, www.itis.ethz.ch/databaseGoogle Scholar
Kikuchi, S. et al., Electron. Comm. Jpn Pt. I 90, 31 (2007)CrossRef
Chiang, J., Wang, P., Brace, C.L., Int. J. Hyperthermia 29, 308 (2013)CrossRef
Komarov, V.V., Int. J. Applied Electromagnetics and Mechanics 36, 309 (2011)
Keangin, P., Rattanadecho, P., Wessapan, T., Int. Commun. Heat Mass Transf. 38, 757 (2011)CrossRef