Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T20:58:56.309Z Has data issue: false hasContentIssue false

Numerical modeling of the effect of optical pulse position on the impulse response of a Metal-Semiconductor-Metal (MSM) photodetector (low field condition)

Published online by Cambridge University Press:  21 July 2011

A. Habibpoor
Affiliation:
Physics Group, Faculty of Science, University of Guilan, Rasht, Islamic Republic of Iran
H.R. Mashayekhi*
Affiliation:
Physics Group, Faculty of Science, University of Guilan, Rasht, Islamic Republic of Iran
*
a e-mail: [email protected]
Get access

Abstract

We present a numerical modeling of the effect of optical pulse position on the impulse response of a GaAs back-gated Metal-Semiconductor-Metal (MSM) photodetector at low bias voltages. The backside contact of the photodetector is set to the floating condition (disconnected from the external circuit). Experimentally the device response to the optical pulse is strong only when the position of the optical pulse is around the anode contact. We have used a one-dimensional time-dependent nonlinear ambipolar transport equation to model this behavior. Our numerical modeling results agree well with the reported experimental findings.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vickers, A.J. et al., Appl. Phys. Lett. 68, 815 (1996)CrossRef
Greger, E. et al., Appl. Phys. Lett. 65, 2223 (1994)CrossRef
Hurd, C.M., Mckinnon, W.R., J. Appl. Phys. 80, 5449, 5451 (1996)CrossRef
Mashayekhi, H.R., Ph.D. thesis, University of Essex, 1999
Neaman, D.A., Semiconductor Physics and Devices: Basic Principles, 3rd edn. (McGraw-Hill Inc., 2003)Google Scholar
Iverson, A.E., Smith, D.L., IEEE Trans. Electron Devices 34, 2098 (1987)CrossRef
Harder, Ch.S. et al., IBM J. Res. Devel. 34, 568 (1990)CrossRef
Sze, S.M., Coleman, D.J., Loya, A., Solid State Electron. 14, 1209 (1971)CrossRef
Koscielniak, W.C., Pelouard, J.L., Littlejohn, M.A., Appl. Phys. Lett. 54, 567 (1989)CrossRef
Sarto, A.W., Zeghbroeck, B.J.V., IEEE J. Quantum Electron. 33, 2188 (1997)CrossRef
Streetman, B.G., Solid State Electronic Devices, 2nd edn. (Prentic Hall, Englewood Cliffs, 1980)Google Scholar
Wurfel, P., Physics of Solar Cells (WILEY-VCH Verlag GmbH & Co. kGaA, Weinheim, 2005)CrossRefGoogle ScholarPubMed
Seeger, K., Semiconductor Physics, 2nd edn. (Springer, New York, 1982)CrossRefGoogle Scholar
Marshak, A.H., Solid State Electron. 21, 429 (1978)CrossRef
Smith, R.A., Semiconductors, 2nd edn. (Cambridge University Press, New York, 1978)Google ScholarPubMed
Barnes, J.J., Lomax, R.J., Haddad, G.I., IEEE Trans. Electron Devices 23, 1042 (1976)CrossRef
Adachi, S., J. Appl. Phys. 58, R1 (1985) CrossRef
Mauby, P.A., Snowden, C.M., Morgan, D.V., in Proc. 2nd Int. Conf. on Simulation of Semiconductor Devices and Processes, vol. 2, edited by Board, K., Owen, D.R.J. (Pineridge, Swansea, UK, 1986), pp. 8289Google Scholar
Shur, M., GaAs Devices and Circuits (Plenum, New York, 1987), p. 384CrossRefGoogle Scholar
Bae-Lev, A., Semiconductors and Electronic Devices, 2nd edn. (Prentice-Hall International Ltd., UK, 1984)Google Scholar
Fichtner, W., Rose, D.J., Bank, R.E., IEEE Trans. Electron Devices 30, 1022 (1983)
Masszi, F., Tove, P.A., Bohline, J., Nord, H., IEEE Trans. Electron Devices 33, 469 (1986)CrossRef
Grove, A.S., Physics and Technology of Semiconductor Devices (Wiley, New York, 1967)Google Scholar