Published online by Cambridge University Press: 21 July 2009
Voltage characteristics of polysilicon thin films transistors (Poly-Si TFTs) are related to basic material and device parameters. Understanding and modeling the electrical behavior of poly-Si TFT require knowledge of equivalent properties of polysilicon which are strongly affected by defects present in this material. A numerical analysis, which studies the electrical characteristics of small-grains poly-Si TFTs, has been investigated. The density of states (DOS) in the band gap is modeled by assuming an exponential distribution of deep and tail states. The proposed model evaluates the influence of both deep and tail states on the electrical conduction process and the dominant contribution of tail states on the threshold voltage values while the deep states in the middle of polysilicon gap controls the lower threshold regime. The surface potential and ON/OFF current ratio are also calculated. The comparison of the generated current-voltage characteristics obtained from numerical simulation TCAD-ATLAS with those reported in the literature show a good agreement.