Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T18:24:58.936Z Has data issue: false hasContentIssue false

Numerical analysis of steric influence on conductivity percolation threshold

Published online by Cambridge University Press:  28 January 2005

M. Ambrožič*
Affiliation:
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
A. Dakskobler
Affiliation:
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
M. Valant
Affiliation:
Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
Get access

Abstract

We have investigated the influence of the steric properties of conducting particles in a nonconducting host matrix on the conductivity threshold of the material, i.e., the minimum volume fraction of conducting phase for the whole sample to become conducting. A statistical, numerical method is used in which the particles are randomly put, one by one, into the nonconducting host and the conducting path is searched. The particles are allowed to penetrate each other to some extent. Three different types of particle shapes are considered: spherical, cylindrical with rounded ends and asymmetric cuboids with rounded surfaces. We have found that in addition to the anisotropy in the particles' dimensions, the angular distribution of the particles' long axes plays a dominant role in the calculations of the conductivity percolation threshold.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Efros, A.L., Shklovskii, B., Phys. Status Solidi 76, 475 (1976) CrossRef
Lisjak, D., Zajc, I., Drofenik, M., Jamnik, J., Solid State Ionics 99, 125 (1997) CrossRef
Lisjak, D., Drofenik, M., Kolar, D., J. Mater. Res. 15, 417 (2000) CrossRef
Gusev, A.A., Guseva, O.A., Adv. Eng. Mater. 5, 713 (2003) CrossRef
Bergman, D.J., Imry, Y., Phys. Rev. Lett. 39, 1222 (1977) CrossRef
Grannan, D.M., Garland, J.C., Tanner, D.B., Phys. Rev. Lett. 46, 375 (1981) CrossRef
Lux, F., J. Mater. Sci. 28, 285 (1993) CrossRef
Quintanilla, J., Torquato, S., Ziff, R.M., J. Phys. A 33, L339 (2000)
Lorenz, C.D., Ziff, R.M., J. Chem. Phys. 114, 3659 (2001) CrossRef
Pike, G.E., Seager, C.H., Phys. Rev. B 10, 1421 (1974) CrossRef
Robinson, P.C., J. Phys. A 17, 2823 (1984) CrossRef
Boudville, W.J., McGill, T.C., Phys. Rev. B 39, 369 (1989) CrossRef
Balberg, I., Binenbaum, N., Phys. Rev. B 28, 3799 (1983) CrossRef
Balberg, I., Binenbaum, N., Wagner, N., Phys. Rev. Lett. 52, 1465 (1984) CrossRef
Balberg, I., Anderson, C.H., Alexander, S., Wagner, N., Phys. Rev. B 30, 3933 (1984) CrossRef
De Bondt, S., Froyen, L., Deruyttere, A., J. Mater. Sci. 27, 1983-1988 (1992) CrossRef
Neda, Z., Florian, R., Phys. Rev. E 59, 3717 (1999)
Huseby, O., Thovert, J.F., Adler, P.M., J. Phys. A 30, 1415 (1997) CrossRef