Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T11:22:03.475Z Has data issue: false hasContentIssue false

Nonlinear compressible magnetohydrodynamic flows modeling of a process ICP torch

Published online by Cambridge University Press:  05 April 2012

N. Ikhlef*
Affiliation:
Laboratoire d’Etudes et de Modélisation en Électrotechnique (LAMEL), Université de Jijel BP 98, Ouled Aissa, 18000 Jijel, Algeria Laboratoire de Physique des Gaz et des Plasmas (LPGP), Université de Paris Sud, 91405 Orsay, France
T. Hacib
Affiliation:
Laboratoire d’Etudes et de Modélisation en Électrotechnique (LAMEL), Université de Jijel BP 98, Ouled Aissa, 18000 Jijel, Algeria
O. Leroy
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas (LPGP), Université de Paris Sud, 91405 Orsay, France
M.R. Mékiddèche
Affiliation:
Laboratoire d’Etudes et de Modélisation en Électrotechnique (LAMEL), Université de Jijel BP 98, Ouled Aissa, 18000 Jijel, Algeria
Get access

Abstract

Magnetohydrodynamics (MHD) describes the physical behavior of inductively coupled plasma (ICP). The goal of this paper is to provide a physical understanding of a process ICP torch using a resistive MHD model. This includes a basic description and derivation of the fluid model. Inductive plasma is treated as a continuous, conducting fluid that satisfies the classical laws of motion and thermodynamics. This model combines fluid equations, similar to those used in fluid dynamics, with Maxwell’s equations. Steady fluid flow and temperature equations are simultaneously solved (direct method) using a finite elements method (FEM). The electromagnetic field equations are formulated in terms of potential vector with applied voltage source, so this model is physically more consistent, a more accurate and a faster simulation. The governing resistive MHD equations for an inductive plasma flow under local thermodynamic equilibrium (LTE) and laminar flow are presented, with appropriate boundary conditions. The model enabled to obtain the electromagnetic fields, temperature and flow velocity distributions also allows the determination of the electric parameters such as impedance of the plasma torch, total power, eddy losses, etc.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolot, R. et al., J. Therm. Spray Technol. 16, 690 (2007)CrossRef
Bernardi, D., Colombo, V., Ghedini, E., Mentrelli, A., Eur. Phys. J. D 27, 55 (2003)CrossRef
Colombo, V., Ghedini, E., Mostaghimi, J., IEEE Trans. Plasma Sci. 2736, 570 (2008)
Bourg, F., Pellerin, S., Morvan, D., Amouroux, J., Chapelle, J., J. Phys D: Appl. Phys. 35, 2281 (2002)CrossRef
André, P., Ondet, J., Bouchard, G., Lefort, A., J. Phys. D: Appl. Phys. 32, 920 (1999)CrossRef
Degrez, G., Abeele, D.V., Barbante, P., Bottin, B., Int. J. Num. Meth. Heat Fluid Flow 14, 538 (2004)CrossRef
Mékidèche, M.R., Féliachi, M., IEEE Trans. Magn. 29, 2476 (1993)CrossRef
Fouladgard, J., Chentouf, A., IEEE Trans. Magn. 29, 2479 (1993)CrossRef
Merkhouf, A., Boulos, M.I., Plasma Sources Sci. Technol. 7, 599 (1998)CrossRef
Ikhlef, N., Ph.D. thesis, University of Batna, Algeria, 2010
Martinez, M.J., Gartling, D.K., Comput. Methods Appl. Mech. Eng. 193, 1959 (2004)CrossRef
Pontazaa, J.P., Diaob, Xu, Reddya, J.N., Surana, K.S., Finite Elem. Anal. Des. 40, 629 (2004)CrossRef
Colombo, V., Ghedini, E., Sanibondi, P., Prog. Nucl. Energy 50, 921 (2008)CrossRef
Deuflhard, P., Numer. Math. 22, 289 (1974)CrossRef
Chen, X., Sugasawa, M., Kikukawa, N., J. Phys. D: Appl. Phys. 31, 1187 (1998)CrossRef
Mékideche, M.R., Ph.D. thesis, University of Nantes, France, 1993
Vanden-Abeele, D., Degrez, G., Plasma Sources Sci. Technol. 13, 680 (2004)CrossRef
Kinder, R.L., Ellingboe, A.R., Kushner, M.J., Plasma Sources Sci. Technol. 12, 561 (2003)CrossRef
Morsli, M.E., Proulx, P., J. Phys. D: Appl. Phys. 40, 4810 (2007)CrossRef
Bernardi, D., Colombo, V., Coppa, G.G.M., D’Angola, A., Eur. Phys. J. D. 14, 337 (2000)CrossRef
Nishiyama, H., Shigeta, M., Eur. Phys. J. Appl. Phys. 18, 125 (2002)CrossRef
Ikhlef, N., Mekidèche, M.R., Leroy, O., IEEE Trans. Plasma Sci. 39, 2380 (2011)CrossRef
Chentouf, A., Fouladgar, J., Develey, G., IEEE Trans. Magn. 32, 1030 (1996)CrossRef
Bourg, F., Pellerin, S., Morvan, D., Amouroux, J., Chapelle, J., J. Phys. D: Appl. Phys. 35, 2281 (2002)CrossRef