Published online by Cambridge University Press: 26 January 2006
In this work, a non-Fourier heat conduction model considering the effect of heat source is presented and applied into pulsed laser deposition (PLD) technique to study target temperature evolvement when the target is radiated by high-power (≥1013 W/m2) short-pulse (in the order of picosecond) laser. Under this kind of irradiation conditions, the finite propagation speed of heat wave must be taken into account. The temperature profiles obtained from our model are compared with those obtained from Fourier conduction model and non-Fourier model without heat source term. The effects of heat source and relaxation time on non-Fourier temperature evolution are emphatically studied. It is found that the effect of non-Fourier heat conduction mainly shows in that it takes the target temperature certain time to start to increase and the increasing of temperature with time is faster obviously than that of Fourier heat conduction case. As for the heat source, it plays an important role that makes surface temperature ascending quicker than the case without heat source. Results also demonstrate that with the increasing of relaxation time, the Non-Fourier effect becomes remarkable more and more. Meanwhile, the corresponding physical mechanisms are investigated in detail.