Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-18T22:08:07.587Z Has data issue: false hasContentIssue false

NMR planar microcoil for microanalysis*

Published online by Cambridge University Press:  11 October 2006

B. Sorli
Affiliation:
Laboratoire d'Électronique Nanotechnologies Capteurs - LENAC, EA3730, Université Lyon 1, Bât. L. Brillouin, 69622 Villeurbanne Cedex, France
J. F. Chateaux*
Affiliation:
Laboratoire d'Électronique Nanotechnologies Capteurs - LENAC, EA3730, Université Lyon 1, Bât. L. Brillouin, 69622 Villeurbanne Cedex, France
L. Quiquerez
Affiliation:
Laboratoire d'Électronique Nanotechnologies Capteurs - LENAC, EA3730, Université Lyon 1, Bât. L. Brillouin, 69622 Villeurbanne Cedex, France
L. Bouchet-Fakri
Affiliation:
Laboratoire de RMN - LRMN, UMR CNRS 5012, Université Lyon 1, ESCPE, 69622 Villeurbanne Cedex, France
A. Briguet
Affiliation:
Laboratoire de RMN - LRMN, UMR CNRS 5012, Université Lyon 1, ESCPE, 69622 Villeurbanne Cedex, France
P. Morin
Affiliation:
Laboratoire d'Électronique Nanotechnologies Capteurs - LENAC, EA3730, Université Lyon 1, Bât. L. Brillouin, 69622 Villeurbanne Cedex, France
Get access

Abstract

This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System ($\mu $-TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29–30 janvier 2004.

References

S. Eroglu, B. Gimi, B. Roman, G. Friedman, Mag. Reson. Eng. 17 B, 1 (2003)
Peck, T.L, Magin, R.L., Lauterbur, P.C., J. Mag. Reson. B 108, 114 (1995) CrossRef
Subramanian, R., Webb, A.G., Anal. Chem. 70, 2454 (1998) CrossRef
Minard, K.R., Wind, R.A., Concept. Magnetic Res. 13, 128 (2001) 3.0.CO;2-8>CrossRef
Minard, K.R., Wind, R.A., Concept. Magnetic Res. 13, 190 (2001) CrossRef
Minard, K.R., Wind, R.A., J. Magn. Reson. 154, 336 (2002) CrossRef
Webb, A.G., Prog. Nucl. Magn. Res. Sp. 31, 1 (1997) CrossRef
Dechow, J., Forchel, A., Lanz, T., Haase, A., Microelectron. Eng. 53, 517 (2000) CrossRef
Massin, C., Boero, G., Vincent, F., Abenhaim, J., Besse, P.-A., Popovic, R.S., Sensor. Actuat. A 3241, 1 (2002)
Massin, C., Vincent, F., Homsy, A., Ehrmann, K., Boero, G., Besse, P.-A., Daridon, A., Verpoorte, E., de Rooij, N.F., Popovica, R.S., J. Magn. Reson. 164, 242 (2003) CrossRef
Armean, M., Briguet, A., Saint-Jalmes, H., C.R. Biologies 325, 1 (2002)
Renaud, L., Armenean, M., Berry, L., Kleimann, P., Morin, P., Pitaval, M., O'Brien, J., Brunet, M., Saint-Jalmes, H., Sensor. Actuat. A 99, 244 (2002) CrossRef
Cespuglio, R., Rev. Neurol. 156, 320 (2000)
Hoult, D.I., Richards, R.E., J. Magn. Reson. 24, 71 (1976)
Condera, V., Le Goff, B., Fabre, N., J. Micromech. Microeng. 9, 173 (1999) CrossRef
Brunet, M., O'Donnell, T., O'Brien, J., McCloskey, P., Mathuna, S.C.O., J. Micromech. Microeng. 12, 444 (2002) CrossRef