Published online by Cambridge University Press: 15 September 2001
An instrumentation system for measuring wide frequency band complex permittivity of a sample submitted to a microwave irradiation has been optimized in order to allow macroscopic temperature measurements. The reaction of saponification of aromatic esters is studied using this instrumentation. We take interest in the behavior of the ionic conductivity phenomenon occurring in the reactive medium during microwave heating, and we compare it with the results obtained under classical heating. We show that the activation energy associated with ionic conductivity is lower when the reaction is performed under microwaves than when it is performed under classical heating. We thus deduce that microwaves act on the reaction advancement as a catalyst, and thus makes the reaction easier.