Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-16T18:22:19.052Z Has data issue: false hasContentIssue false

Neural networks for broad-band evaluation of complex permittivity using a coaxial discontinuity

Published online by Cambridge University Press:  30 May 2007

H. Acikgoz*
Affiliation:
Laboratoire de Génie Électrique de Paris – LGEP, CNRS UMR 8507, Supelec, Univ. Pierre et Marie Curie-P6, Univ. Paris Sud-P11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex, France
Y. Le Bihan
Affiliation:
Laboratoire de Génie Électrique de Paris – LGEP, CNRS UMR 8507, Supelec, Univ. Pierre et Marie Curie-P6, Univ. Paris Sud-P11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex, France
O. Meyer
Affiliation:
Laboratoire de Génie Électrique de Paris – LGEP, CNRS UMR 8507, Supelec, Univ. Pierre et Marie Curie-P6, Univ. Paris Sud-P11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex, France
L. Pichon
Affiliation:
Laboratoire de Génie Électrique de Paris – LGEP, CNRS UMR 8507, Supelec, Univ. Pierre et Marie Curie-P6, Univ. Paris Sud-P11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex, France
Get access

Abstract

The aim of this study is to determine the complex permittivity of dielectric materials using a coaxial discontinuity and the combination of neural networks (NN) with the finite element method. Two types of measurement cells are used. One is for solid samples and the other one for liquids. Data sets used to train neural networks are created using the finite element method. The number of hidden neurons of the NN is determined by the split-sample method. The designed NN are used for the estimation of the permittivity of several materials and their results compared with the ones obtained with a gradient inversion method.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belhadj-Tahar, N., Fourrier-Lamer, A., IEEE Trans. Microwave Theor. Tech. 34, 346 (1986) CrossRef
Hornik, K., Stinchcombe, M., White, H., Neural Network 2, 359 (1989) CrossRef
Eclercy, D., Reineix, A., Jecko, B., Microwave Opt. Technol. Lett. 16, 72 (1997) 3.0.CO;2-F>CrossRef
Bensetti, M., Le Bihan, Y., Marchand, C., Premel, D., Studies Appl. Electromagn. Mech. (Electromagnetic Nondestructive Evaluation VII) 26, 81 (2006)
W.S. Sarle, Neural Network FAQ, Part 2 of 7: Learning, periodic posting to the Usenet newsgroup comp.ai.neural-nets, available by ftp://ftp.sas.com/pub/neural/FAQ.html
Belhadj-Tahar, N., Fourrier-Lamer, A., De Chanterac, H., IEEE Trans. Microwave Theor. Tech. 38, 1 (1990) CrossRef
E. Bondet de la Bernardie, Thesis of University of Pierre and Marie Curie, 2006
S. Courtois, R. Phan-Tan-Luu, Neural networks applied to the choice of an experimental design (EDP Sciences, Wiley-VCH, Analusis, 1998), Vol. 26, pp. 304–310
W.S. Sarle, Neural Network FAQ, Part 3 of 7: Generalization, periodic posting to the Usenet newsgroup comp.ai.neural-nets, available by ftp://ftp.sas.com/pub/neural/FAQ.html