Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T13:58:04.723Z Has data issue: false hasContentIssue false

Nanomechanical behavior of (1 0 0) oriented titanium thin films

Published online by Cambridge University Press:  07 March 2014

Kuraganti Vasu*
Affiliation:
School of Physics, University of Hyderabad, Hyderabad 500 046, India
Mamidipudi Ghanashyam Krishna
Affiliation:
School of Physics, University of Hyderabad, Hyderabad 500 046, India Centre for Nanotechnology, University of Hyderabad, Hyderabad 500 046, India
Kuppuswamy Anantha Padmanabhan
Affiliation:
Centre for Nanotechnology, University of Hyderabad, Hyderabad 500 046, India School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500 046, India
*
Get access

Abstract

Titanium thin films were deposited on single crystal Si (3 1 1) and polycrystalline 316 LN nuclear grade stainless steel substrates by RF magnetron sputtering. X-ray diffraction revealed that, irrespective of substrate type, films exhibit preferential growth along the (1 0 0) plane. The microstructure of the films corresponds to the zone-I type in structure zone model on both substrates. The hardness and Young's modulus of the films were extracted from load-displacement curves. The maximum values of hardness and Young's modulus were 12 and 132 GPa respectively for 220 nm thin film on SS substrate. The electrical resistivity data revealed that the films are metallic in nature and the resistivity is lower in the case of the 220 nm thickness film, on both substrates. The observed changes in mechanical and electrical properties can be correlated with variations in the microstructure of Ti films.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kataria, S., Kumar, N., Dash, S., Tyagi, A.K., Wear 269, 797 (2010)CrossRef
Balagna, C., Faga, M.G., Spriano, S., J. Nanosci. Nanotechnol. 11, 8994 (2011)CrossRef
Walker, J.D., Khatri, H., Ranjan, V., Jian, L., Collins, R.W., Marsillac, S., Appl. Phys. Lett. 94, 141908 (2009)CrossRef
Bemporad, E., Carassiti, F., Sebastiani, M., Lanza, G., Palmieri, V., Padamsee, H., Supercond. Sci. Technol. 21, 125026 (2008)CrossRef
Poppeller, M., Abermann, R., Thin Solid Films 295, 60 (1997)CrossRef
Thompson, C.V., Carel, R., J. Mech. Phys. Solids 44, 657 (1996)CrossRef
Chang, R.C., Chen, F.Y., Chuang, C.T., Tung, Y.C., J. Nanosci. Nanotechnol. 10, 4562 (2010)CrossRef
Chawla, V., Jayaganthan, R., Chawla, A.K., Chandra, R., J. Mater. Proc. Technol. 209, 3444 (2009)CrossRef
Gunasekhar, K.R., Srinivasulu, S., Swarnalatha, M., Krishna, M.G., Mohan, S., Thin Solid Films 252, 7 (1994)CrossRef
Chawla, V., Jayaganthan, R., Chawla, A.K., Chandra, R., Mater. Chem. Phys. 111, 414 (2008)CrossRef
Song, Y.H., Cho, S.J., Jung, C.K., Bae, I.S., Boo, J.H., J. Korean Phys. Soc. 51, 1152 (2007)CrossRef
Bunshah, R.F., J. Vac. Sci. Technol. 11, 814 (1974)CrossRef
Sundgren, J.E., Johansson, B.O., Hentzell, H.T.G., Karlsson, S.E., Thin Solid Films 105, 355 (1984)
Martin, P.J., Netterfield, R.P., J. Vac. Sci. Technol. A 5, 22 (1987)CrossRef
Thornton, J.A., Hoffman, D.W., Thin Solid Films 171, 5 (1989)CrossRef
Hoffman, D.W., J. Vac. Sci. Technol. A 12, 953 (1994)CrossRef
Volvada, V., J. Alloys Compd. 219, 83 (1995)CrossRef
Oliver, W.C., Pharr, G.M., J. Mater. Res. 7, 1564 (1992)CrossRef
Vasu, K., Krishna, M.G., Padmanabhan, K.A., Thin Solid Films 519, 7702 (2011)CrossRef
Vasu, K., Krishna, M.G., Padmanabhan, K.A., Phys. Status Solidi A 210, 1938 (2013)