Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T08:40:39.778Z Has data issue: false hasContentIssue false

Modelling of parasitic effects induced by electrically active defects in a SiGe HBT

Published online by Cambridge University Press:  24 June 2008

M. Lakhdara*
Affiliation:
Laboratoire Hyperfréquence & Semi-conducteur (LHS), Département d'Électronique, Faculté des Sciences de l'Ingénieur, Université Mentouri, Constantine, 25000, Algeria
S. Latreche
Affiliation:
Laboratoire Hyperfréquence & Semi-conducteur (LHS), Département d'Électronique, Faculté des Sciences de l'Ingénieur, Université Mentouri, Constantine, 25000, Algeria
C. Gontrand
Affiliation:
INL, Institut des Nanotechnologies de Lyon, INSA-Lyon, CNRS, Bâtiment Blaise Pascal, 7 avenue Jean Capelle, Villeurbanne Cedex 69621, France
Get access

Abstract

In this paper, we present a numerical modelling of a NPN SiGe heterojunction bipolar transistor (HBT) realized in an industrial 0.35 µm BiCMOS process, using our own software simulator “SIBIDIF”, taking into account some electrically active defects in the HBT device. The electric performances of this device can be penalized by the presence of defects inherent to the complex structure shrinking. For our devices, most of these relevant defects are located at the vertical interface between the spacers and the polysilicon emitter, due to the Reactive Ion Etching (RIE) process step. Nevertheless, their localization, as well as theirs effective density or their capture section, have an influence on the electric characteristics of the HBT's. As a check, we find some good agreement between our simulated results and some experimental ones. Our work is focused on the identification of defects responsible for the current fluctuations at the origin of low frequency noise or Random Telegraphic Signals in industrial submicronic BiCMOS technologies. Gummel characteristics are simulated in order to identify generation-recombination or trap assisted tunnelling process in the base current. We have shown that devices having an excess base current present random discrete fluctuations on the base current.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. Voldman, P. Juliano, A. Botula, R. Johonson, L. Lanzerotti, N Feilchenfeld, A. Joseph, L. Malinowski, E. Eld, V. Gross, C. Brennan, J. Dunn, D. Harame, D. Herman, B. Meyerson, in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting (2000), p. 214
Niu, G., Tang, J., Feng, Z., Joseph, A.J., Harame, D.L., IEEE Trans. Microwave Theory Tech. 53, 506 (2005)
Le Tron, B., Hashim, M.D.R., Ashburn, P., Mouis, M., Chantre, A., Vincent, G., IEEE Trans. Electron. Devices 44, 715 (1997) CrossRef
Baudry, H., Fellous, C., Marnet, B., Romgana, F., Marty, M., Mourier, J., Troillard, G., Laurens, M., Monroy, A., Dutartre, D., Chanter, A., J. Mater Sci. Eng. B 89, 21 (2002) CrossRef
Militaru, L., Souifi, A., Mouis, M., Chantre, A., Brémond, G., Microelectr. Reliability 41, 253 (2001) CrossRef
Zhao, E., Cressler, J.D., Diwany, M.E., Krakowski, T.L., Sadowinkov, A., Kocoski, D., Solid State Electron. 50, 1748 (2006) CrossRef
A. Coustou, D. Dubuc, J. Graffeuil, O. Llopis, E. Tournier, R. Plana, IEEE Microwave and Wireless Components Letters 15, No. 2 (2005)
Iyer, S.S., Patton, G.L., Delage, S.L., Tiwari, S., Stork, J.M.C., Tech. Dig. Int. Electron Device Lett. 9, 165 (1988)
People, R., Bean, J.C., Appl. Phys. Lett. 48, 538 (1986) CrossRef
E.J. Prinz, P.M. Garone, P.V. Schwartz, X. Xioa, J.C. Strum, in IEDM Tech. Dig. 639 (1989)
People, R., Phys. Rev. B: Condens. Matter 32, 1405 (1985) CrossRef
Bean, J.C., IEEE Proceeding 80, 571 (1992) CrossRef
Cressler, J.D., IEEE Trans. Microwave Theory Tech. 46, 572 (1998) CrossRef
Jouan, S., Planche, R., Baudry, H., Ribot, P., Chroboczek, J.A., Dutartre, D., Gloria, D., Laurents, M., Linares, P., Marty, M., Monroy, A., Morin, C., Pantel, R., Perrotin, A., de Pontcharra, J., Rogolini, J.L., Vienvent, G., Chantre, A., IEEE Trans. Electron Devices 46, 1525 (1999) CrossRef
Latreche, S., Gontrand, C., Phys. Stat. Sol. (b) 214, 203 (1999) 3.0.CO;2-E>CrossRef
S. Latreche, Ph.D thesis, University INSA-Lyon, 1998
M. Lakhdara, S. Latreche, F. Miller, C. Gontrand, in IEEE Proceeding of the 16 th International Conference on Microelectronics, Tunisia (2004)
J. Poortmans, M. Caymax, A. Van Ammel, M. Libezny, K. Werner, S.C. Jain, J. Nijis, R. Mertenes, in Proceeding 23rd European Solid-State Devices Research Conf. (1993), p. 317
Manku, T., Mc Gregor, J.M., Nathan, A., Roulston, D.J., Noel, J.P., Houghton, D.C., IEEE Trans. Electron Devises 40, 1990 (1993) CrossRef
SILVACO International, ATLAS user's manuel chapter, BLAZE
Richey, D.M., Cressler, J.D., Joseph, A.J., IEEE Trans. Electron Devices 44, 1990 (1997) CrossRef
O. De Barros, Ph.D. thesis, Institut National des Sciences Appliquées, INSA-Lyon, 1997
C. Gontrand, J. Raoult, P. Girard, S. Latreche, L. Militaru, F. Miller, J. Verdier, K. Soufi, F. Calmon, P.J. Viverge, B. Bouazza, Recent in Transworld Research Network (2002), p. 131
de Berranger, E., Bodnar, S., Chantre, A., Kirtsh, J., Monroy, A., Garnier, A., Laurens, M., Regolini, J.L., Mouis, M., Thin Solid Films 294, 250 (1997) CrossRef
Andersson, G.I., Andersson, M.O., Engström, O., Appl. Phys. 72, 2680 (1992) CrossRef