Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T19:42:01.015Z Has data issue: false hasContentIssue false

Modelling of negative point-to-plane corona loudspeaker

Published online by Cambridge University Press:  15 July 2001

Ph. Béquin*
Affiliation:
Laboratoire d'Acoustique de l'Université du Maine (UMR - CNRS 6613), Université du Maine, avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
V. Montembault
Affiliation:
Laboratoire d'Acoustique de l'Université du Maine (UMR - CNRS 6613), Université du Maine, avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
Ph. Herzog
Affiliation:
Laboratoire de Mécanique et d'Acoustique (UPR 7051), 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
Get access

Abstract

In this paper, electrical and acoustical characteristics of negative point-to-plane corona discharge loudspeakers are investigated. In the first part, the electrical behaviour of point-to-plane corona discharges is modelled by a three-parameters $(r_i, r_u, C_u)$ equivalent circuit. An experimental set-up for estimating these electrical parameters has been developed and improved. Based on the experimental results, evolution of the parameters with discharge conditions has been traced. In the second part, the electrode gap in negative point-to-plane corona discharges is divided into an ionisation region near the point, and a drift region. In each region, interactions between charged and neutral particles in the ionised gas lead to a perturbation of surrounding air, and so generate an acoustic field. For each region, seen as a separate acoustic source, an acoustical model is developed. An experimental set-up for measuring acoustic pressure has been developed, and allows us to confirm expectations based on directivity pattern, monopolar and dipolar directivities being associated to the ionisation and drift region respectively.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borra, J.P., Tombette, Y., Ehouarn, P., J. Aerosol Sci. 30, 913 (1999). CrossRef
Deng, X., Adamiak, K., IEEE Trans. Ind. Appl. 35, 767 (1999). CrossRef
Dascalescu, L., Samuila, A., Rafiroiu, D., Iuga, A., Morar, R., IEEE Trans. Ind. Appl. 35, 543 (1999). CrossRef
Fransson, F.J., Jansson, E.V., J. Acoust. Soc. Am. 58, 910 (1975). CrossRef
Mazzola, M.S., Molen, G.M., J. Acoust. Soc. Am. 81, 1972 (1987). CrossRef
Bastien, F., J. Phys. D Appl. Phys. 20, 1547 (1987). CrossRef
Béquin, Ph., Herzog, Ph., Acta Acust. 83, 359 (1997).
L.B. Loeb, Electrical coronas (University of California Press, 1965).
E. Nasser, Fundamentals of Gaseous ionisation and plasmas electronics (Wiley, New York, 1971), Vol. 1.
M. Goldman, A. Goldman, Gaseous electronics (Academic Press, New York, 1978), Vol. 1.
E.E. Kunhardt, L.H. Luessen, Electrical breakdown and discharges in Gases (Plenum Press, New York, 1982).
Y.P. Raiser, Gas discharge physics (Springer-Verlag, Berlin Heidelberg, 1991).
Walsh, P.J., Pietrowski, K.W., Sigmond, R.S., Photogr. Sci. Eng. 28, 101 (1984).
Ferreira, G.F.L., Oliveira, O.N., Giacometti, J.A., J. Appl. Phys. 59, 3045 (1986). CrossRef
Chang, J.S., Lawless, P.A., Yamamoto, T., IEEE Trans. Plasma Sci. 19, 1152 (1991). CrossRef
Robledo-Martinez, A., J. Electrostat. 29, 101 (1992). CrossRef
Haidara, M., Denat, A., Atten, P., J. Electrostat. 40-41, 61 (1997). CrossRef
Madani, M.R., Miller, T.A., IEEE Trans. Instrum. Meas. 47, 907 (1998). CrossRef
Uhm, H.S., Phys. Plasmas 6, 623 (1999). CrossRef
Akishev, Y.S., Grushin, M.E., Kochetov, I.V., Napartovich, A.P., Trushkin, N.I., Plasma Phys. Rep. 25, 922 (1999).
Jones, J.E., J. Phys. D Appl. Phys. 32, 1243 (1999). CrossRef
Lama, W.L., Gallo, C.F., J. Appl. Phys. 45, 103 (1974). CrossRef
Seaver, A.E., IEEE Ind. Appl. Magn. 1, 30 (1995). CrossRef
Morrow, R., Phys. Rev. A 32, 1799 (1986). CrossRef
Akishev, Y.S., Kochetov, I.V., Napartovich, A.P., Trushkin, N.I., Plasma Phys. Rep. 21, 179 (1995).
Napartovich, A.P., Akishev, Y.S., Deryugin, A.A., Kochetov, I.V., Pan'kin, M.V., Trushkin, N.I., J. Phys. D Appl. Phys. 30, 2726 (1997). CrossRef
Akishev, Y.S., Grushin, M.E., Kochetov, I.V., Napartovich, A.P., Pan'kin, M.V., Trushkin, N.I., Plasma Phys. Rep. 26, 157 (2000). CrossRef
Kekez, M.M., Savic, P., Lougheed, G.D., J. Phys. D Appl. Phys. 15, 1963 (1982). CrossRef
V. Montembault, Étude des sources acoustiques associées aux décharges corona négatives, Ph.D. thesis, Université du Maine, Le Mans, France, 1997.
Bayle, P., Bayle, M., Forn, G., J. Phys. D Appl. Phys. 18, 2417 (1985). CrossRef