Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T19:29:56.319Z Has data issue: false hasContentIssue false

Modeling of an axial injection torch

Published online by Cambridge University Press:  08 April 2009

L. L. Alves*
Affiliation:
Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
R. Álvarez
Affiliation:
Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
L. Marques
Affiliation:
Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal Centro de Física da Universidade do Minho, Universidade do Minho, 4710-057 Braga, Portugal
S. J. Rubio
Affiliation:
Departamento de Física, Universidad de Córdoba, Campus Universitario de Rabanales, Spain
A. Rodero
Affiliation:
Departamento de Física, Universidad de Córdoba, Campus Universitario de Rabanales, Spain
M. C. Quintero
Affiliation:
Departamento de Física, Universidad de Córdoba, Campus Universitario de Rabanales, Spain
Get access

Abstract

This paper presents simulation results for a microwave (2.45 GHz) plasma reactor, operated by an axial injection torch (AIT). The study gives a two-dimensional description of the AIT-reactor system, based on an electromagnetic model (that solves Maxwell's equations adopting a time-harmonic description, yielding the distribution of the electromagnetic fields and the average power absorbed by the plasma), and a hydrodynamic model (that solves the Navier-Stokes' equations for the flowing neutral gas, yielding the distribution of mass density, pressure, temperature, and velocities). Comparison between model results and experimental measurements reveal common variation trends, with changes in the reactor height, for the power reflected by the system, and yield a qualitative agreement for the axial profile of the gas rotational temperature. Model results, such as the power transmission coefficient and the gas temperature, are particularly dependent on the reactor dimensions, the electron density and temperature, and the gas input flow, which indicates that simulations can be used to provide general guidelines for device optimization.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moisan, M., Sauvé, G., Zakrzewski, Z., Hubert, J., Plasma Sources Sci. Technol. 3, 584 (1994) CrossRef
Rodero, A., Quintero, M.C., Sola, A., Gamero, A., Spectrochim. Acta Part B 51, 467 (1996) CrossRef
Rodero, A., García, M.C., Quintero, M.C., Sola, A., Gamero, A., J. Phys. D: Appl. Phys. 29, 681 (1996) CrossRef
Jonkers, J., de Regt, J.M., van der Mullen, J.A.M., Vos, H.P.C., de Groote, F.P.J., Timmermans, E.A.H., Spectrochim. Acta Part B 51, 1385 (1996) CrossRef
Jonkers, J., Selen, L.J.M., van der Mullen, J.A.M., Timmermans, E.A.H., Schram, D.C., Plasma Sources Sci. Technol. 6, 533 (1997) CrossRef
Quintero, M.C., Rodero, A., García, M.C., Sola, A., Appl. Spectrosc. 51, 778 (1997) CrossRef
Timmermans, E.A.H., Thomas, I.A.J., Jonkers, J., van der Mullen, J.A.M., Schram, D.C., Fresenius J. Anal. Chem. 362, 440 (1998) CrossRef
Álvarez, R., Quintero, M.C., Rodero, A., Spectrochim. Acta Part B 59, 709 (2004) CrossRef
Rubio, S., Rodero, A., Quintero, M.C., Álvarez, R., Lao, C., Gamero, A., Acta Phys. Slov. 54, 125 (2004)
Gritsinin, S.I., Kossyi, I.A., Kulumbaev, É.B., Lelevkin, V.M., Plasma Phys. Rep. 32, 872 (2006) CrossRef
Álvarez, R., Alves, L.L., J. Appl. Phys. 101, 103303 (2007) CrossRef
Álvarez, R., Alves, L.L., IEEE Trans. Plasma Sci. 36, 1378 (2008) CrossRef
Álvarez, R., Alves, L.L., J. Phys. D: Appl. Phys. 41, 215204 (2008) CrossRef
R. Álvarez, L.L. Alves, in Proc. XIX Europhysics Conf. Atomic and Molecular Physics of Ionised Gases, Granada, Spain, 2008
Bilgic, A.M., Garloff, K., Voges, E., Plasma Sources Sci. Technol. 8, 325 (1999) CrossRef
M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley, New York, 1994)
Alves, L.L., Ferreira, C.M., J. Phys. D: Appl. Phys. 24, 581 (1991) CrossRef
C.C. Johnson, Field and Wave Electrodynamics (McGraw-Hill, New York, 1965)
R.E. Collin, Foundations for Microwave Engineering (McGraw-Hill, New York, 1966)
Lindman, E.L., J. Comput. Phys. 18, 66 (1975) CrossRef
Engquist, B., Majda, A., Math. Comput. 31, 629 (1977) CrossRef
Mur, G., IEEE Trans. Electromagn. Compat. 23, 377 (1981) CrossRef
Higdon, R.L., Math. Comput. 47, 437 (1986)
Higdon, R.L., Math. Comput. 49, 65 (1987) CrossRef
Mur, G., IEEE Trans. Electromagn. Compat. 40, 100 (1998) CrossRef
Yee, K.S., IEEE Trans. Ant. Propag. 14, 302 (1966)
Numerical Recipes in C, edited by W.H. Press et al. (Cambridge University Press, Cambridge, 1988)
J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics (Springer-Verlag, 1999)
Kabouzi, Y., Graves, D.B., Castaños-Martínez, E., Moisan, M., Phys. Rev. E 75, 016402 (2007) CrossRef
J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (John Wiley, 1964)
Barkhudarov, É.M., Gritsinin, S.I., Dreiden, G.V., Knyazev, V.Yu., Kop'ev, V.A., Kossyi, I.A., Misakyan, M.A., Ostrovskaya, G.V., Silakov, V.P., Plasma Phys. Rep. 30, 531 (2004) CrossRef