Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T04:45:02.867Z Has data issue: false hasContentIssue false

Minority carrier lifetime enhancement in multicrystalline silicon

Published online by Cambridge University Press:  05 January 2012

M. Ben Rabha*
Affiliation:
Laboratoire de Photovoltaque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisia
S. Belhadj Mohamed
Affiliation:
Laboratoire de Photovoltaque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisia
A. Hajjaji
Affiliation:
Laboratoire de Photovoltaque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisia
W. Dimassi
Affiliation:
Laboratoire de Photovoltaque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisia
M. Hajji
Affiliation:
Laboratoire de Photovoltaque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisia
S. Aouida
Affiliation:
Laboratoire de Photovoltaque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisia
M. Gaidi
Affiliation:
Laboratoire de Photovoltaque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisia
M. Bouaicha
Affiliation:
Laboratoire de Photovoltaque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisia
B. Bessais
Affiliation:
Laboratoire de Photovoltaque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050 Hammam-Lif, Tunisia
*
Get access

Abstract

In this work a new passivation method is proposed for multicrystalline silicon wafers. This method combines the use of porous silicon (PS) and silicon nitride (SiN) coating. SiN thin film is deposited on porous silicon by the plasma-enhanced chemical vapor deposition (PECVD) technique at low temperature and investigated as a passivating and an antireflection coating. We demonstrate that silicon nitride-covered porous silicon is capable of giving an outstanding surface passivation quality on mc-Si. PS-SiN passivation on mc-Si leads to an effective minority carrier lifetime of 100 μs, which is among the highest lifetimes attained on this kind of material. This high effective lifetime results not only from the excellent degree of surface passivation but also from the grain boundaries and bulk passivation. The surface reflectivity was dramatically reduced from 27% for untreated Si wafer to about 5% after PS-SiN coating in the 400–1100 nm wavelength range.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Canham, L.T., Properties of Porous Silicon, 1st edn. (Inspec, London, 1997), p. 23Google Scholar
Guerrero-Lemus, R., Hernández-Rodríguez, C., Ben-Hander, F., Martínez-Duart, J.M., Solar Energy Mater. Solar Cells 72, 495 (2002)CrossRef
Bastide, S., Albu-Yaron, A., Strehlke, S., Levy-Clement, C., Solar Energy Mater. Solar Cells 57, 393 (1999)CrossRef
Osorio, E., Urteaga, R., Acquaroli, L.N., García- Salgado, G., Juaréz, H., Koropecki, R.R., Solar Energy Mater. Solar Cells 95, 3069 (2011)CrossRef
Ramizya, A., Hassana, Z., Omara, K., Al-Dourib, Y., Mahdia, M.A., Appl. Surf. Sci. 257, 6112 (2011)CrossRef
Cornagliotti, E., Dekkers, H.F.W., Prastani, C., John, J., Van Kerschaver, E., Poortmans, J., Mertens, R.P., Solid State Phenomena 156, 357 (2010)
Focsa, A., Slaoui, A., Charifi, H., Stoquert, J.P., Roques, S., Mat. Sci. Eng. B 159, 242 (2009)CrossRef
Otani, T., Hirata, M., Thin Solid Films 442, 44 (2003)CrossRef
Schlemm, H., Mai, A., Roth, S., Roth, D., Baumgartner, K.M., Muegge, H., Surf. Coat. Technol. 174, 208 (2003)CrossRef
Takagi, T., Takeche, K., Nakagawa, Y., Watabe, Y., Nishida, S., Vacuum 51, 751 (1998)CrossRef
Leguijt, C., Lolgen, P., Eikelboom, J.A., Weeper, A.W., Schuurmans, F.M., Sinke, W.C., Alkemade, P.F.A., Sarro, P.M., Maree, C.H.M., Verhoef, L.A., Solar Energy Mater. Solar Cells 40, 297 (1996)CrossRef
Brown, W.D., Khaliq, M.A., Thin Solid Films 186, 73 (1990)CrossRef
Herzinger, C.H., Johs, B., McGahan, W.A., Woollam, J.A., Paulson, W., Appl. Opt. 83, 3323 (1998)
Philipp, H.R., in Handbook of Optical Constants of Solids, edited by Palik, E.D. (Academic, New York, 1985), p. 749CrossRefGoogle Scholar
Jellison, G.E., Modine, F.A., Doshi, P., Rohatgi, A., Thin Solid Films 313, 193 (1998)CrossRef
Jellison, G.E., Modine, F.A., Appl. Phys. Lett. 69, 371 (1996)CrossRef
Stannowski, B., Rath, J.K., Schropp, R.E.I., J. Appl. Phys. 93, 2618 (2003)CrossRef
Kalem, Ş., Göbelek, D., Kurtar, R., Misirli, Z., Aydinli, A., Ellialtioḡlu, R., Nanostruct. Mater. 6, 847 (1995)CrossRef
Cullis, A.G., Canham, L.T., Calcott, P.D.J., J. Appl. Phys. 82, 909 (1997)CrossRef
Hasegawa, S., He, L., Amano, Y., Inokuma, T., Phys. Rev. B 48, 5315 (1993)CrossRef
Toušek, J., Toušková, J., Poruba, A., Hlídek, P., Lörinčík, J., J. Appl. Phys. 100, 113716 (2006)CrossRef
Hawegawa, S., Matsuda, M., Kurata, Y., Appl. Phys. Lett. 57, 2211 (1990)CrossRef
Wolf, S.D., Agostinelli, G., Beaucarne, G., J. Appl. Phys. 97, 063303 (2005)CrossRef
Krotkus, A., Grigoras, K., Pacebutas, V., Barsony, I., Vazsonyi, E., Fried, M., Szlafcik, J., Nijs, J., Lévy-Clément, C., Solar Energy Mater. Solar Cells 45, 267 (1997)CrossRef
Ben Rabha, M., Dimassi, W., Bouaїcha, M., Ezzaouia, H., Bessais, B., Sol. Energy 83, 721 (2009)CrossRef
Ben Rabha, M., Bessaїs, B., Sol. Energy 84, 486 (2010)CrossRef
Asinovsky, L., Shen, F., Yamaguchi, T., Thin Solid Films 313, 198 (1998)CrossRef