Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T16:23:54.850Z Has data issue: false hasContentIssue false

Minority carrier bulk lifetimes through a large multicrystalline silicon ingot and related solar cell properties

Published online by Cambridge University Press:  31 August 2007

S. Martinuzzi*
Affiliation:
Université Paul Cézanne Aix-Marseille III- Faculté des Sciences et Techniques 13397 Marseille Cedex 20, France
M. Gauthier
Affiliation:
Photowatt Int. SA, ZI Champfleuri, 38300, Bourgoin Jailleu, France
D. Barakel
Affiliation:
Université Paul Cézanne Aix-Marseille III- Faculté des Sciences et Techniques 13397 Marseille Cedex 20, France
I. Périchaud
Affiliation:
Université Paul Cézanne Aix-Marseille III- Faculté des Sciences et Techniques 13397 Marseille Cedex 20, France
N. Le Quang
Affiliation:
Photowatt Int. SA, ZI Champfleuri, 38300, Bourgoin Jailleu, France
O. Palais
Affiliation:
Université Paul Cézanne Aix-Marseille III- Faculté des Sciences et Techniques 13397 Marseille Cedex 20, France
G. Goaer
Affiliation:
Photowatt Int. SA, ZI Champfleuri, 38300, Bourgoin Jailleu, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The bulk lifetime $\tau _{n}$ and diffusion length L n of minority carriers vary through the height of a cast multicrystalline silicon (mc-Si) block. This variation is due to the segregation of metallic impurities during the directional solidification and the native impurity concentrations increase from the bottom to the top of the ingot, which is solidified last, while the ingot bottom, which is solidified first, is contaminated by the contact with the crucible floor. It is of interest to verify if a correlation exists between the bulk lifetime $\tau $ of as cut wafers and the conversion efficiency $\eta $ of solar cells. In a very large ingot (>310 kg), it was found that $\tau_{0}$ , in raw wafers, $\tau_{dif}$ in phosphorus diffused ones and L n in diffused wafers are smaller in the top and in the bottom of the ingot. The same evolution is observed in solar cells, however the diffusion length values L cel in the central part of the ingot are markedly higher than those found in diffused wafers, due to the in-diffusion of hydrogen from the SiN-H antireflection coating layer. The variations of $\eta $ and those of $\tau _{0}$ , along the ingot height, are well correlated, suggesting that the evaluation of $\tau _{0}$ can predict the properties of the devices. In addition, segregation phenomena around the grain boundaries are observed at the bottom of the ingots, due to a marked contamination by the crucible floor, and at its top where impurities are accumulated. These phenomena are linked to the long duration of the solidification process and the large amount of imperfect silicon used to cast the ingot.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

References

Macdonald, D., Cuevas, A., Kinomura, A., Nakano, Y., Geerligs, L.J., J. Appl. Phys. 97, 33523 (2005) CrossRef
L.J. Geerligs, Proc. of 14th Workshop on Crystalline Silicon, NREL, Winter Park-CO. USA, 2004, p. 143
A. Bentzen, H. Tathgar, R. Kopecek, R. Sinton, A. Holt, Proc. of the 31st IEEEE Photovoltaics Specialists Conference, Lake Buena Vista Fl, 3–7 January 2005 (IEEE, New York, 2005), pp. 1074–1077
K. Peter, R. Kopecek, T. Pernau, E. Enelbakk, K. Friestad, R. Tronstad, C. Dethloff, Proc. of the 31st IEEEE Photovoltaics Specialists Conference, Lake Buena Vista Fl, 3–7 January 2005 (IEEE, New York, 2005), pp. 927–930
Sinton, R.A., Cuevas, A., Appl. Phys. Lett. 69, 2510 (1996) CrossRef
Palais, O., Gervais, J., Yakimov, E., Martinuzzi, S., Eur. Phys. J. Appl. Phys. 10, 157 (2000) CrossRef
Stemmer, M., Appl. Surf. Sci. 63, 213 (1993) CrossRef
Périchaud, I., Solar Energy Mat. Solar Cells 72, 315 (2002) CrossRef
Dubois, S., Palais, O., Pasquinelli, M., Martinuzzi, S., Jaussaud, C., J. Appl. Phys. 100, 024510 (2006) CrossRef
Istratov, A.A., Hielsmair, H., Weber, E.W., Appl. Phys. A 69, 13 (1999) CrossRef
Kang, J.S., Schroder, D.K., J. Appl Phys. 65, 2974 (1989) CrossRef
Muller, J.C., Martinuzzi, S., J. Mater. Res. 13, 2721 (1998) CrossRef
Mc Hugo, S., Thompson, A.C., Lamble, G., Périchaud, I., Martinuzzi, S., J. Appl. Phys. 89, 4282 (2001) CrossRef
Martinuzzi, S., Périchaud, I., Warchol, F., Solar Energy Mat. Solar Cells 80, 343 (2003) CrossRef
G. Hahn, D. Sontag, S. Seren, A. Schönecker, A.R. Burgers, R. Ginige, K. Cherkaoui, D. Karg, M. Stavola, Proc. 19th EU Photovoltaic Solar Energy Conf., Paris, France, June 2004 (WIP, Munich, 2004), pp. 427–430
Périchaud, I., Martinuzzi, S., J. Phys. III France 2, 313 (1992) CrossRef
M. Rinio, C. Ballif, T. Buonassisi, D. Borchert, in reference [15], p. 507