Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T21:28:59.320Z Has data issue: false hasContentIssue false

A mechanism of raft formation on both plasma membrane layers

Published online by Cambridge University Press:  08 October 2013

Kan Sornbundit*
Affiliation:
Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Charin Modchang
Affiliation:
Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Wannapong Triampo
Affiliation:
Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand Institute for Innovative Learning, Mahidol University, Nakhon Pathom 73170, Thailand ThEP Center, CHE, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
Darapond Triampo
Affiliation:
Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Narin Nuttavut*
Affiliation:
Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Get access

Abstract

A double-layered membrane model is proposed to explain raft formation and induction on extracellular (outer) and cytoplasmic (inner) leaflets of plasma membranes in a situation where only the outer layer has a tendency to phase-separate. In the model, lipid exchange with the surrounding medium is allowed on both layers, but lipid exchange between layers is not allowed. Simulations display domain stabilization on both layers. The effect of the lipid recycling frequencies on stationary domain sizes is also investigated. It is found that stationary domain sizes decrease when lipid recycling frequencies are stronger. Linear stability analysis is used to verify the results.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Simons, K., Ikonen, E., Nature 387, 569 (1997)CrossRef
Gaus, K., Gratton, E., Kable, E., Jones, A., Gelissen, I., Kritharides, L., Jessup, W., Proc. Natl. Acad. Sci. USA 100, 15554 (2003)CrossRef
Prior, I.A., Muncke, C., Parton, R.G., Hancock, J.F., J. Cell Biol. 160, 165 (2003)CrossRef
Foret, L., Europhys. Lett. 71, 508 (2005)CrossRef
Pike, L., J. Lipid Res. 47, 1597 (2006)CrossRef
Bretscher, M.S., Nature 236, 11 (1972)
Wan, C., Kiessling, V., Tamm, L., Biochemistry 47, 2190 (2008)CrossRefPubMed
Sornbundit, K., Ngamsaad, W., Modchang, C., Nuttavut, N., Triampo, D., Triampo, W., Int. J. Phys. Sci. 7, 6034 (2012)
Prost, J., Bruinsma, R., Europhys. Lett. 33, 321 (1996)CrossRef
Manneville, J.B., Bassereau, P., Ramaswamy, S., Prost, J., Phys. Rev. E 64, 219081 (2001)CrossRef
Simons, K., Ikonen, E., Science 290, 1721 (2000)CrossRef
Sleight, R.G., Pagano, R.E., J. Cell Biol. 99, 742 (1984)CrossRef
Gómez, J., Sagués, F., Reigada, R., Phys. Rev. E 77, 021907 (2008)CrossRef
Gómez, J., Sagués, F., Reigada, R., Phys. Rev. E 80, 011920 (2009)CrossRef
Das, T., Maiti, T.K., Chakraborty, S., Phys. Rev. E 83, 021909 (2011)CrossRef
Simons, K., Toomre, D., Nat. Rev. Mol. Cell Biol. 1, 31 (2000)CrossRef
Chazal, N., Gerlier, D., Microbiol. Mol. Biol. Rev. 67, 226 (2003)CrossRef
Wagner, A., Loew, S., May, S., Biophys. J. 93, 4268 (2007)CrossRef
Putzel, G.G., Schick, M., Biophys. J. 94, 869 (2008)CrossRef
Collins, M.D., Keller, S.L., Proc. Natl. Acad. Sci. USA 105, 124 (2008)CrossRef
May, S., Soft Matter 5, 3148 (2009)CrossRef
Radhakrishnan, A., McConnell, H., Proc. Natl. Acad. Sci. USA 102, 12662 (2005)CrossRef
Chaikin, P.M., Lubensky, T.C., Witten, T.A., Principles of Condensed Matter Physics (Cambridge Univ Press, 2000)Google Scholar
Kiessling, V., Wan, C., Tamm, L.K., Biochim. Biophys. Acta 1788, 64 (2009)CrossRef
Marko, J.F., Barkema, G.T., Phys. Rev. E 52, 2522 (1995)CrossRef
Allender, D.W., Schick, M., Biophys. J. 91, 2928 (2006)CrossRef