Published online by Cambridge University Press: 27 August 2013
Tunably controlling waveguide behaviors are always desirable for various kinds of applications. In this work, we theoretically propose the possibility to realize a tunable high-pass waveguide by magnetically controlling magnetorheological fluids inside. Through computer simulations and numerical calculations, we find that the low-pass or high-pass behavior of such waveguides can be manually switched. Furthermore, the cutoff frequency and transmission band of the waveguides can be smoothly controlled by an applied magnetic field. It is revealed that the underlying mechanism lies in the field-induced anisotropic structure of magnetorheological fluids. By combining soft materials, this work shows a way to obtain magnetocontrollable properties of waveguides, which may help to achieve tunable properties for other metamaterial-based devices like invisible cloaks and photonic crystals.