Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T23:06:48.716Z Has data issue: false hasContentIssue false

Magnetic properties and domain structures in stress-annealed FeZrB-(Cu)-(Nb) nanocrystalline ribbons

Published online by Cambridge University Press:  15 September 2001

A. Benchabi*
Affiliation:
Magnetic Materials team, LESiR/CNAM-ENS Cachan 61, avenue Pr. Wilson, 94235 Cachan Cedex, France
F. Alves
Affiliation:
Magnetic Materials team, LESiR/CNAM-ENS Cachan 61, avenue Pr. Wilson, 94235 Cachan Cedex, France
R. Barrué
Affiliation:
Magnetic Materials team, LESiR/CNAM-ENS Cachan 61, avenue Pr. Wilson, 94235 Cachan Cedex, France
J. C. Faugières
Affiliation:
Magnetic Materials team, LESiR/CNAM-ENS Cachan 61, avenue Pr. Wilson, 94235 Cachan Cedex, France
J. F. Rialland
Affiliation:
Magnetic Materials team, LESiR/CNAM-ENS Cachan 61, avenue Pr. Wilson, 94235 Cachan Cedex, France
Get access

Abstract

Magnetic properties of nanocrystalline FeZrB-(Cu)-(Nb) compared to FeSiBCuNb are reported. Observations of domain patterns by magneto-optical Kerr effect (MOKE) method presented herein highlight qualitatively the incidence of stress-annealing on the induced anisotropy in soft magnetic materials. Transverse fine domains found in FeSiBCuNb alloys are consistent to a magneto-elastic interpretation of the stress-induced anisotropy. Nevertheless, it is not the case for FeZrB-(Cu)-(Nb) family where we observe a pronounced longitudinal induced anisotropy. According to the so-called “back stress effect” advanced by Herzer, the negative $\lambda_{\rm s}$ of bcc α-Fe grains, as well of bcc α-FeSi grains, should yield transverse anisotropy. Nowadays, this surprising feature is not still clear. For a technical standpoint, stress-induced anisotropy is interesting for new magnetic components in power electronics.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Glazer, A.A., Kleynerman, N.M., Lukshina, V.A., Potapov, A.P., Serikov, V.V., Phys. Met. Metall. 72, 53 (1991).
Soyka, V., Kraus, L., J. Magn. Magn. Mater. 203, 220 (2000). CrossRef
Lachowicz, H.K., Neuweiler, A., Poplawski, F., Kopcewicz, M., J. Phys. IV France 8, 23 (1998). CrossRef
Hofmann, B., Kronmüller, H., J. Magn. Magn. Mater. 152, 91 (1996). CrossRef
Alves, F., Desmoulins, J.B., Hérisson, D., Rialland, J.F., Costa, F., J. Magn. Magn. Mater. 215-216, 387 (2000). CrossRef
Houzali, A., Alves, F., Perron, J.C., Barrué, R., Rev. Sci. Instrum. 66, 4671 (1995). CrossRef
Houzali, A., Alves, F., Perron, J.C., Mater. Sci. Forum 179-181, 615 (1995). CrossRef
Kurlyandskaya, G.V., Vazquez, M., Mu, J.L. noz, D. Garcìa, J. McCord, J. Magn. Magn. Mater. 167-196, 259 (1999). CrossRef
Herzer, G., IEEE Trans. Magn. 30, 1397 (1994). CrossRef
Alves, F., Houée, P., Lécrivain, M., Mazaleyrat, F., J. Appl. Phys. 81, 4322 (1997). CrossRef
R.M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1953), p. 663.
Garcia-Tello, P., Gonzalez, J., Valenzuela, R., Blanco, J.M., J. Magn. Magn. Mater. 215-216, 316 (2000). CrossRef
Zeng, L., Chen, G., Gong, F.F., Wang, Z.C., Yang, J.X., Yang, X.L., J. Magn. Magn. Mater. 208, 74 (2000). CrossRef