Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T20:36:56.284Z Has data issue: false hasContentIssue false

Magnetic field enhanced hydrophilicity of Fe-TiO2 nanostructures

Published online by Cambridge University Press:  05 July 2012

F. Ostovari
Affiliation:
Nano-Physics Research Laboratory, Department of physics, University of Tehran, Tehran, Iran Department of physics, Tarbiat Modarres University, Tehran, Iran
Y. Abdi*
Affiliation:
Nano-Physics Research Laboratory, Department of physics, University of Tehran, Tehran, Iran
*
Get access

Abstract

An oxygen plasma treatment was used to prepare Fe-doped TiO2 nanoparticles. The anatase and rutile phases of TiO2 nanoparticles were achieved by an atmospheric pressure chemical vapor deposition method. The nanostructures were doped by Fe atoms to obtain a ferromagnetic nanostructure based on TiO2 nanoparticles. Atomic force microscopy and magnetic force microscopy were used for morphological and magnetic investigation of as-prepared samples. Measurements have confirmed the induced magnetic moment of the structures. Magnetic field-induced wettability of the prepared nanostructures was investigated in dark and under UV and visible light. The results showed a considerable enhancement in the wettability of the structure by applying the magnetic field.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Whitaker, K.M., Raskin, M., Kiliani, G., Beha, K., Ochsenbein, S.T., Janssen, N., Fonin, M., Rudiger, U., Leitenstorfer, A., Gamelin, D.R., Bratschitsch, R., Nano Lett. 11, 3355 (2011)CrossRef
The-Long Phan, Yu, S.C., Vincent, R., Bui, H.M., Thanh, T.D., Lam, V.D., Lee, Y.P., Appl. Phys. 108, 044910 (2010)
Flatte, M.E., Nat. Phys. 7, 285 (2011)CrossRef
Matsumoto, Y., Murakami, M., Shono, T., Hesegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Kashihara, S., Koinuma, H., Science 291, 854 (2001)CrossRef
Jansich, R., Gopal, P., Spaldin, A.N., J. Phys. Condens. Matter 17, 657 (2005)CrossRef
Cabrera, A.F., Rodringuez Torres, C.E., Errico, L., Sanchez, F.H., Physica B 384, 345 (2006)CrossRef
Homonnay, Z., Nomura, K., Kuzmann, E., ICAME 2, 12 (2007)
Duhalde, S., Vignolo, M.F., Golmar, F., Chiliotte, C., Rodríguez Torres, C.E., Errico, L.A., Cabrera, A.F., Rentería, M., Sánchez, F.H., Weissmann, M., Phys. Rev. B 72, 161313 (2005)CrossRef
Hu, E., Ph.D. Thesis, The Florida State University, College of Art and Sciences, 2007
Kim, K.J., Park, Y.R., Ahn, G.Y., Kim, C.S., Paule, J.Y., J. Magn. Magn. Mater. 304, 752 (2006)
Kim, D.H., Woo, S.I., Moon, S.H., Kim, H.D., Kim, B.Y., Cho, J.H., Joh, Y.G., Kim, E.C., Solid State Commun. 13, 554 (2005)CrossRef
Torres, C.E.R., Duhalde, S., Cabrera, A.F., Sanchez, F.H., Chilliote, C., Vignoto, M.F., Physica B 384, 341 (2006)CrossRef
Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C. A., Nano Lett. 5, 191 (2005)CrossRef
Park, J.H., Kim, S., Bard, A.J., Nano Lett. 6, 24 (2006)CrossRef
Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., Nano Lett. 6, 215 (2006)CrossRef
Wang, G., Wang, Q., Lu, W., Li, J., J. Phys. Chem. B 110, 22029 (2006)CrossRef
Zhang, S., Jiang, D., Zhao, H., Environ. Sci. Technol. 40, 2363 (2006)CrossRef
De Vos, D.E., Dams, M., Sels, B.F., Jacobs, P.A., Chem. Rev. 102, 3615 (2002)CrossRef
Yu, J.C., Ho, W., Yu, J., Yip, H., Wong, P.K., Zhao, J., Environ. Sci. Technol. 39, 1175 (2005)CrossRef
Darbari, S., Abdi, Y., Haghighi, F., Mohajerzadeh, S., Haghighi, N., J. Phys. D: Appl. Phys. 44, 245401 (2011)CrossRef
Abdi, Y., Khalilian, M., Arzi, E., J. Phys. D: Appl. Phys. 44, 255405 (2011)CrossRef
Kern, W., Handbook of Semiconductor Wafer Cleaning Technology (Noyes Publications, Park Ridge, NJ, 1993)Google Scholar