Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T06:32:44.095Z Has data issue: false hasContentIssue false

Low temperature semi-quantitative analysis of local electrical field in silicon diode by transmission electron microscopy

Published online by Cambridge University Press:  18 May 2006

C. Cabanel*
Affiliation:
Laboratoire de Physique du Solide, ESPCI – UPR5 CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France
D. Brouri
Affiliation:
Laboratoire de Physique du Solide, ESPCI – UPR5 CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France
J. Y. Laval
Affiliation:
Laboratoire de Physique du Solide, ESPCI – UPR5 CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France
Get access

Abstract

The local electric behaviour of IMPATT diodes was studied by scanning transmission electron beam induced current in cross-section method (X-STEBIC). This technique of induced current measurement makes it possible to probe the depletion zone of a junction with the beam of a transmission electron microscope. Two series of experiments were carried out. The X-STEBIC signal was analyzed according to the sample thickness and under different electrical polarizations. Moreover, these measurements were done and compared at room and low temperature (110 K). From these data, simulations of X-STEBIC profile allowed us to determine the main physical parameters brought into play in the signal formation. We have shown that, in the vicinity of the junction, the intensity of the induced current partly depends on the avalanche effect. The kinetic energy of the minority carriers generated by the electron beam is sufficient to induce collisions in cascade, even when the junction is not polarized. At low temperature, surface recombination has an essential role on the lateral resolution of the X-STEBIC method. By choosing carefully the range of sample thickness and by positioning the probe in the field of the diode, it is possible to optimize the resolution. Surface recombination annihilates the diffusion of the carriers so that the STEBIC image becomes a true image of the electric field. Consequently, semi-quantitative physical data can be obtained on the junction field.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cabanel, C., Laval, J.Y., J. Appl. Phys. 67, 1425 (1990) CrossRef
Laval, J.Y., Pinet-Berger, M.H., Cabanel, C., J. Phys. C 5, 521 (1988)
T.G. Sparrow, U. Valdrè, Philos. Mag. 36, (1977)
Pennycook, S.J., Ultramicroscopy 7, 99 (1981) CrossRef
Petroff, P.M., Lang, D.L., Strudel, J.L., Logan, R.A., Scanning Electron Microsc. 1, 325 (1978)
Petroff, P.M., Logan, R.A., Savage, A., Phys. Rev. Lett. 4, 287 (1980) CrossRef
T. Benabbas, J.Y. Laval, M. Leliboux, Electron Microscopy, EUREM 92, Granada, Spain, 1992, Vol. 2
T. Benabbas, Ph.D. Thesis, University Paris XI, 1992
Benabbas, T., Cabanel, C., Laval, J.Y., Pastol, J.L., Nguyen Dinh Huynh, J. Phys. 51, C1-439 (1990)
Brown, L.M., Fathy, D., Philos. Mag. 43, 715 (1981) CrossRef
Cabanel, C., Maya, H., Laval, J.Y., Philos. Mag. Lett. 79, 55 (1999) CrossRef
J.I. Goldstein, J.L. Costley, G.W. Lorimer, S.J.B. Reed, Scanning Electron Microscopy, edited by O. Johari (IIT Research Institute, Chicago, 1977), Vol. 1, p. 315
L. Reimer, Transmission Electron Microscopy: Springer Series in Optical Sciences, 36, edited by P.W. Hawkes, 2nd edn. (1984), p. 180
Maya, H., Cabanel, C., Laval, J.Y., Peymayeche, L., de Lustrac, A., Bouillaut, F., Eur. Phys. J. Appl. Phys. 10, 43 (2000) CrossRef
L. Reimer, Electron Transmission Microscopy: Springer Series in Optical Science, 36, edited by P.W. Hawkes, 2nd edn. (1984), p. 431
Culshaw, B., Giblin, R.A., Blakey, P.A., Int. J. Electron. 39, 121 (1975) CrossRef
Duchemin, J.P., J. Electrochem. Soc. 128, 2187 (1978)
Duchemin, J.P., Bonnet, M., Koelsch, F., J. Electrochem. Soc. 125, 637 (1978) CrossRef
Everhart, T.E., Hoff, P.H., J. Appl. Phys. 42, 5837 (1971) CrossRef
Bethe, H.A., Ann. Phys. Leipzig 5, 325 (1930) CrossRef
B. Jouffrey, Microscopie électronique en sciences des matériaux, École d'Été de Bombannes, edited by B. Jouffrey, A. Bourret, C. Colliex (CNRS, 1981), p. 85
Landau, L., J. Phys. U.S.S.R. 8, 201 (1944)
Fabri, G., Gatti, E., Velto, V.S., Phys. Rev. 131, 134 (1963) CrossRef
Fiebiger, J.R., Muller, R.S., J. Appl. Phys. 43, 3202 (1972) CrossRef
M. Troyon, Microscopie électronique en sciences des matériaux, École d'Été de Bombannes du CNRS (CNRS, 1981), p. 1
S. Selberherr, Analysis and simulation of semiconductor devices (Springer-Verlag, Wien, New York, 1984), p. 111
Dziewior, J., Schmid, W., Auger, W., Appl. Phys. Lett. 31, 346 (1977) CrossRef
Moll, J.L., Van Overstraeten, R., Solid State Electron. 6, 147 (1963) CrossRef
Donolato, C., J Appl. Phys. 54, 3 (1983)
H.W. Marten, O. Hildebrand, Scanning Electron Microsc. III, 1197 (1983)
H.W. Marten, O. Hildebrand, Proc. 15th Colloquium on Surface Imaging and Analysis in Microareas, Bremen, Germany, 1982
L. Peymayeche, Ph.D. Thesis, University Paris XI, 1998
Donolato, C., Phys. Status Solidi A 65, 649 (1981) CrossRef
Arora, N.D., Haiser, J.R., Roulston, D.J., IEEE T. Electron Dev. 29, 970 (1982)
Caughey, D.M., Thomas, R.E., IEEE Proc. 55, 2192 (1967) CrossRef
Shockley, W., Read, W.T., Phys. Rev. 87, 835 (1952) CrossRef