Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T14:42:57.185Z Has data issue: false hasContentIssue false

Low temperature Hall effect studies of InSb thin films grown by flash evaporation

Published online by Cambridge University Press:  13 April 2011

C. K. Sumesh*
Affiliation:
Department of Physics, Charotar University of Science and Technology, CHARUSAT, 388420 Changa, Anand, India
K. D. Patel
Affiliation:
Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, Anand, India
G. K. Solanki
Affiliation:
Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, Anand, India
V. M. Pathak
Affiliation:
Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, Anand, India
R. Srivastav
Affiliation:
Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388120 Gujarat, Anand, India
Get access

Abstract

Thin films of InSb with different thickness (t = 5, 10 and 15 kÅ) were deposited on to glass substrate by flash evaporation technique. The structural and electrical properties were investigated and the effect of films thickness on films properties was discussed. XRD analysis of the films as a function of film thickness revealed that crystallinity improves with film thickness. Temperature dependence of the Hall parameters were studied in a wide range, 20 < T < 300 K. The temperature variation of the Hall coefficient and conductivity shows an activated nature with negative temperature coefficient confirming that the prepared films of InSb are semiconducting in nature with n-type conductivity. Size effect was observed as the defect density is much smaller for thicker films and as a result electrical conductivity of the films increases with increasing film thickness with the increase of the charge carriers through the film. An increase in mobility with sample thickness has been observed. The mobility variations with temperature revealed a transition from lattice to impurity scattering in the observed temperature range.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhu, Z.G., Low, T., Li, M.F., Fan, W.J., Bai, P., Kwong, D.L., Samudra, G., Semicond. Sci. Technol. 23, 025009 (2008) CrossRef
van Welzenis, R.G., Ridley, B.K., Solid State Electron. 27, 113 (1984) CrossRef
R.J. Egan, V.W.L. Chin, T.L. Tansley, Semicond. Sci. Technol. 9, 1591(1994)
Chen, L.P., Luo, J.J., Liu, R.H., Yang, S.P., Pang, Y.M., Jpn J. Appl. Phys. Lett. 31, 813 (1992) CrossRef
Branski, P.I., Gorodrichi, O.P., Shevchenko, V.V., Infrared Phys. 30, 59 (1990)
A.G. Milnes, Deep impurities in semiconductors (Wiley, New York, 1973)
Berus, T., Oszwaldowski, M., Grabowski, J., Sens. Actuat. A: Phys. 116, 75 (2004) CrossRef
Carpenter, M.K., Verbrugge, M.W., J. Mater. Res. 9, 2584 (1994) CrossRef
Van Tonder, B.J.E., Friedland, E., Nucl. Instrum. Meth. B 35, 268 (1988) CrossRef
Okamoto, A., Yoshida, T., Muramatsu, S., Shibasaki, I., J. Cryst. Growth 201, 765 (1999) CrossRef
Oi, T., Kotera, N., Shigeta, J., Yamamoto, N., Nakashima, N., Jpn J. Appl. Phys. 17, 407 (1978) CrossRef
Osborn, G.C., J. Vac. Sci. Technol. B 2, 176 (1984) CrossRef
Yasuoka, Y., Okuda, T., Inoue, N., Jpn J. Appl. Phys. 27, L886 (1988) CrossRef
Heremans, J., Partin, D.L., Thrush, M., Green, L., Semicond. Sci. Technol. 8, S424 (1993) CrossRef
Solin, S.A., Thio, T., Hines, D.R., Heremans, J.J., Science 289, 1530 (2000) CrossRef
Miyazaki, T., Adachi, S., Appl. Phys. 70, 1672 (1991) CrossRef
Yang, T.R., Cheng, Y., Wang, J.B., Feng, Z.C., Thin Solid Films 498, 158 (2006) CrossRef
Kallaher, R.L., Heremans, J.J., Phys. Procedia 3, 1237 (2010) CrossRef
Yamaguchi, S., Nagawa, Y., Kaiwa, N., Yamamoto, A., Appl. Phys. Lett. 86, 153504 (2005) CrossRef
Okimura, H., Koizumi, Y., Kaida, S., Thin Solid Films 254, 169 (1995) CrossRef
Chyi, J.A., Biswanas, D., Iyer, S., Kumar, V., Hmorkoe, N.S., Appl. Phys. Lett. 54, 1016 (1989) CrossRef
Chang, P.K., Bedair, S.M., Appl. Phys. Lett. 46, 383 (1985) CrossRef
Carrolnand, J.A., Spivak, J.F., Solid State Electron. 9, 383 (1966)
Asauskas, R., Dobro, V., Krotkus, A., Sov. Phys. Semicond. 14, 1377 (1980)
Tomisu, M., Inoue, N., Yasuoka, Y., Vacuum 47, 239 (1996) CrossRef
W.W. Lam, I. Shih, Mater. Lett. 16, (1993)
Burvenich, X.M., Thin Solid Films 27, 129 (1975) CrossRef
Chou, L.H., Thin Solid Films 215, 188 (1992) CrossRef
Farag, A.A.M., Terra, F.S., Mahmoud, G.M., Mansour, A.M., J. Alloys Compd. 481, 427 (2009) CrossRef
Senthilkumar, V., Venkatachalam, S., Viswanathan, C., Gopal, S., Narayandass, Sa.K., Mangalaraj, D., Wilson, K.C., Vijayakumar, K.P., Cryst. Res. Technol. 40, 573 (2005) CrossRef
Hill, R., Richardson, D., Wilson, S., J. Phys. D: Appl. Phys. 5, 185 (1972) CrossRef
Hattori, K., Yuito, M., Amakusa, T., Phys. Stat. Sol. (a) 73, 157 (1982) CrossRef
D.K. Schroder, Semiconductor material and device characterization (John Wiley & Sons, New York, 1990)
O. Madelung, Semiconductors-Basic Data (Springer-Verlag, Heidelberg, New York, 1996)
Kale, R.B., Lokhande, C.D., Semicond. Sci. Technol. 20, 1 (2005) CrossRef
Seto, J.Y.W., J. Appl. Phys. 46, 5247 (1975) CrossRef
Beccarani, G., Ricco, B., Spadini, G., J. Appl. Phys. 49, 5565 (1978) CrossRef
Garcia-Cuenca, M.V., Merenza, J.L., J. Phys. D: Appl. Phys. 18, 2081 (1985) CrossRef
Jung, Y.J., Park, M.K., Tae, S.I., Lee, K.H., Lee, H.J., J. Appl. Phys. 69, 3109 (1991) CrossRef
Cunningham, R.W., Gruber, J.B., J. Appl. Phys. 41, 1804 (1970) CrossRef
Rawdanowicz, T.A., Iyer, S., Mitchel, W.C., Saxler, A., Elhamri, S., J. Appl. Phys. 92, 296 (2002) CrossRef
Biefeld, R.M., Hebner, G.A., Appl. Phys. Lett. 57, 1563 (1990)
Gaskiil, D.K., Stauf, G.T., Bottka, N., Appl. Phys. Lett. 58, 1905 (1991) CrossRef
Iwamura, Y., Watanabe, N., Jpn J. Appl. Phys. 32, L68 (1992) CrossRef
H. Brooks, Advances in Electronics and Electron Physics (Academic Press, New York, 1957)