Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T16:16:25.669Z Has data issue: false hasContentIssue false

Low frequency noise modeling of polycrystalline silicon thin-film transistors

Published online by Cambridge University Press:  08 July 2009

W. Deng*
Affiliation:
Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510630, P.R. China
P. Liang
Affiliation:
South China University of Technology, Guangzhou 510640, P.R. China
C. Wei
Affiliation:
South China University of Technology, Guangzhou 510640, P.R. China
Get access

Abstract

A modified and improved low frequency model for polycrystalline silicon thin-film transistors (poly-Si TFTs) is developed in this paper. For small grain size poly-Si TFTs, based on carrier number fluctuations, an improvement of the standard low frequency noise model has been investigated to explain the noise characteristics of poly-Si TFTs. An exponential energy distribution for interface density of states is employed to model the interface trap capacitance. For large grain size devices, mobility fluctuations related to fluctuations of the grain boundary charges is used to describe the excess subthreshold noise. The anomalous noise increase behavior of poly-Si TFTs when operated in the kink regime is also studied and modeled. The proposed model and the experimental data agree well over a wide range of operation regimes.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dimitriadis, C.A., Farmakis, F.V., Kamarinos, G., Brini, J., J. Appl. Phys. 91, 9919 (2002) CrossRef
Corradetti, A., Leoni, R., Carluccio, R., Fortunato, G., Appl. Phys. Lett. 67, 1730 (1995) CrossRef
Rahal, M., Lee, M., Burdett, A.P., IEEE Trans. Electron Dev. 49, 319 (2002) CrossRef
Pichon, L., Boukhenoufa, A., Cordier, C., Cretu, B., J. Appl. Phys. 100, 054504-1 (2006) CrossRef
Aoki, M., Hashimoto, T., Yamanaka, T., Nagano, T., Jpn J. Appl. Phys. 35, 838 (1996) CrossRef
Dimitriadis, C.A., Kamarinos, G., Brini, J., IEEE Electron Dev. Lett. 22, 381 (2001) CrossRef
Angelis, C.T., Dimitriadis, C.A., Brini, J., Kamarinos, G., Gueorguiev, V.K., Ivanov, T.E., IEEE Trans. Electron Dev. 46, 968 (1999) CrossRef
Dimitriadis, C.A., Kamarinos, G., Brini, J., Evangelou, E.K., Gueorguiev, V.K., Appl. Phys. Lett. 74, 108 (1999) CrossRef
Giovannini, S., Mariucci, L., Pecora, A., Foglietti, V., Fortunato, G., Reita, C., Electron. Lett. 33, 2075 (1997) CrossRef
Hung, K.K., Ko, P.K., Hu, C., Cheng, Y.C., IEEE Trans. Electron Dev. 37, 1323 (1990) CrossRef
Dimitriadis, C.A., Brini, J., Kamarinos, G., Gueorguiev, V.K., Ivanov, T.E., J. Appl. Phys. 83, 1469 (1998) CrossRef
Dimitriadis, C.A., Brini, J., Lee, J.I., Farmakis, F.V., Kamarinos, G., J. Appl. Phys. 85, 3934 (1999) CrossRef
S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)
Jacunski, M.D., Shur, M.S., Owusu, A.A., Ytterdal, T., Hack, M., Iñiguez, B., IEEE Trans. Electron Dev. 46, 1146 (1999) CrossRef
Deng, W., Zheng, X., Chen, R., Liu, Y., Solid-State Electron. 52, 695 (2008) CrossRef
Hung, K.K., Ko, P.K., Hu, C., Cheng, Y.C., IEEE Trans. Electron Dev. 37, 654 (1990) CrossRef
Bonfiglietti, A., Valletta, A., Mariucci, L., Pecora, A., Fortunato, G., Appl. Phys. Lett. 82, 2709 (2003) CrossRef
Seto, J.Y.W., J. Appl. Phys. 46, 5247 (1975) CrossRef
Verleg, P.A.W.E., Dijkhuis, J.I., Phys. Rev. B 58, 3904 (1998) CrossRef
Hooge, F.N., Physica B 311, 238 (2002) CrossRef
Giovannini, S., Carluccio, R., Mariucci, L., Pecora, A., Fortunato, G., Reita, C., Plais, F., Pribat, D., Appl. Phys. Lett. 71, 1216 (1997) CrossRef