Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T08:29:27.088Z Has data issue: false hasContentIssue false

Light impulses at the dark- to glow discharge transition in a low pressure point-to-plane gap

Published online by Cambridge University Press:  03 September 2003

N. Spyrou*
Affiliation:
Electrotechnic Materials Laboratory, University of Patras, 26500 Patras-Rio, Greece
A. E. Ercilbengoa
Affiliation:
Laboratoire d'Électronique des Gaz et des Plasmas, Université de Pau et des Pays de l'Adour, CURS, avenue de l'Université, 64000 Pau, France
J. F. Loiseau
Affiliation:
Laboratoire d'Électronique des Gaz et des Plasmas, Université de Pau et des Pays de l'Adour, CURS, avenue de l'Université, 64000 Pau, France
Get access

Abstract

The transition from low pressure corona (dark discharge) to glow discharge is studied for nitrogen in the 1–10 mbar pressure range in DC positive point-to-plane geometry for various cathode materials. A systematic study of the spatial distribution of the discharge's light intensity, correlated with the current impulses recorded at the cathode, is performed by focusing on the slit of a photomultiplier the light emitted from small regions along the gap axis. For pressures higher than 2 mbar, the luminous activity of the discharge, amplified by a photomultiplier, is characterized by complex impulse waveforms. A study of these waveforms shows that a weak light peak initiated at the anode, propagates towards the cathode with increasing velocity and amplitude. Travelling slower than a streamer, this impulse may be attributed to a weak ionizing front accelerating in the middle of the gap. A second peak is superimposed in the anode-sided half interval, the interpretation of which, supported also by numerical simulations, could reveal the fast propagation of a new front. The influence of cathode material on this second peak shows that it is in fact linked to the secondary emission of the cathodic region. From the analysis of these results, the transition appears to be a complex physical process beginning by a weak ionizing wave starting at the anode and propagating towards the cathode. The arrival of this wave in the cathode region enhances the local field and contributes to the amplification of the cathodic secondary processes. Arriving in the anode region, the secondary electrons initiate a new ionizing wave, stronger than the first one, which crosses the gap very rapidly and establishes the glow discharge.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E. Nasser, Fundamentals of gaseous ionization and plasma electronics (New-York: Wiley-Interscience, 1971)
Yu.P. Raizer, Gas Discharge Physics (Berlin: Springer-Verlag, 1991)
B. Held, Proc. 11th Int. Conf. on Gas Discharges and their Applications, Tokyo (Japan), 1995, Vol. II, pp. 514-526
Ercilbengoa, A.E., Loiseau, J.F., Spyrou, N., J. Phys. D: Appl. Phys. 33, 2425 (2000) CrossRef
Ercilbengoa, A.E., Spyrou, N., Loiseau, J.F., J. Phys. D: Appl. Phys. 34, 584 (2001) CrossRef
N. Spyrou, A.E. Ercilbengoa, J.F. Loiseau, Proc. 13th Int. Conf. on Gas Discharges, their Applications: GD 2000, Glasgow (G.B.), 2000, Vol. 1, pp. 359-362
Gasparik, R., Yamabe, C., Ihara, S., Satoh, S., Jpn J. Appl. Phys. 37, 5786 (1998) CrossRef
S. Lachaud, J.F. Loiseau, R. Peyrous, D. Gonbeau, 7 e Congrès de la division ``plasma'', Société Française de Physique, Piriac-sur-mer (France), 2001
Clément, F., Held, B., Soulem, N., Spyrou, N., Eur. Phys. J. AP 13, 67 (2001) CrossRef
Clément, F., Held, B., Soulem, N., Eur. Phys. J. AP 13, 141 (2001) CrossRef
Lisovskiy, V.A., Yakovin, S.D., Yegorenkov, V.D., J. Phys. D: Appl. Phys. 33, 2722 (2000) CrossRef
Loiseau, J.F., Ercilbengoa, A.E., Gresser, L., Held, B., Proc. ESCAMPIG XIV, Dublin (Ireland) - Europhysics Conference Abstracts 22H, 264 (1998)
A.E. Ercilbengoa, J.F. Loiseau, R. Peyrous, Proc. 6th Int. Symposium on High Pressure Low Temperature Plasma Chemistry, HAKONE VI, Cork (Ireland), 1998, pp. 103-107
A.E. Ercilbengoa, Étude expérimentale des régimes de décharge continue positive dans l'azote et l'air pour différentes pressions, Thesis, Université de Pau et des Pays de l'Adour (France), 1999
Loiseau, J.F., Ercilbengoa, A.E., Spyrou, N., Proc. ESCAMPIG XV, Lillafüred-Miskolc (Hungary) - Europhysics Conference Abstracts 24F, 244 (2000)
Spyrou, N., Peyrous, R., Soulem, N., Held, B., J. Phys. D: Appl. Phys. 28, 701 (1995) CrossRef
Pancheshnyi, S.V., Starikovskaia, S.M., Starikovskii, A.Yu., J. Phys. D: Appl. Phys. 32, 2219 (1999) CrossRef
Starikovskaia, S., Anikin, N., Pancheshnyi, S., Starikovskii, A., Proc. ESCAMPIG XV, Lillafüred-Miskolc (Hungary) - Europhysics Conference Abstracts 24F, 38 (2000)
Grangé, F., Soulem, N., Loiseau, J.F., Spyrou, N., J. Phys. D: Appl. Phys. 28, 1619 (1995) CrossRef
Cernak, M., Hosokawa, T., Phys. Rev. A 43, 1107 (1991) CrossRef
Cernak, M., Hosokawa, T., Odrobina, I., J. Phys. D: Appl. Phys. 26, 607 (1993) CrossRef
A. Von Engel, Ionized gases (Oxford: Clarendon, 1965)
Spyrou, N., Manassis, Ch., J. Phys. D: Appl. Phys. 22, 120 (1989) CrossRef
Potamianou, S., Spyrou, N., Loiseau, J.F., J. Phys. D: Appl. Phys. 35, 1373 (2002) CrossRef
J.R. Roth, Industrial Plasma Engineering (IOP: Bristol and Philadelphia, 1995)