Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T08:33:02.203Z Has data issue: false hasContentIssue false

LIF spectroscopy of OH radicals in a micro-flow DC discharge in Ar and He with a liquid electrode

Published online by Cambridge University Press:  28 October 2011

A. Nikiforov*
Affiliation:
Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, 9000 Ghent, Belgium Laboratory of Nonlinear Plasma Processes and Technologies, Institute of Solution Chemistry, Academicheskaya 1, Ivanovo 153045, Russia
L. Li
Affiliation:
Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, 9000 Ghent, Belgium
Q. Xiong
Affiliation:
Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, 9000 Ghent, Belgium College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, WuHan, Hubei 430074, P.R. China
C. Leys
Affiliation:
Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, 9000 Ghent, Belgium
X.P. Lu
Affiliation:
College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, WuHan, Hubei 430074, P.R. China
*
Get access

Abstract

The laser-induced fluorescence spectroscopy on a micro-flow discharge with water electrode is carried out in order to investigate OH radicals. The branches P2(6), P1(4) and P2(3) of X2Π, ν′′ = 0−A2Σ, ν′ = 1 transition are used. Laser-induced fluorescence is used in order to estimate the density of OH radicals and density of water vapor in a core of the plasma. Sputtering yield of H2O from the liquid electrode is calculated based on experimental data. It is revealed that plasma core consists of 8–10% of water in both Ar and He discharges. The density of OH radicals in the micro-flow He plasma is higher than in the glow discharge with liquid electrode and in Ar micro-flow discharge due to constriction of the positive column and different mechanism of the OH radical production.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruggeman, P., Leys, C., J. Phys. D: Appl. Phys. 42, 053001 (2009)CrossRef
Staack, D., Farouk, B., Gutsol, A., Fridman, A., Plasma Source Sci. Technol. 17, 025013 (2008)CrossRef
Verreycken, T., Schram, D.C., Leys, C., Bruggeman, P., Plasma Source Sci. Technol. 19, 045004 (2010)CrossRef
Ono, R., Yamashita, Y., Takezawa, K., Oda, T., J. Phys. D: Appl. Phys. 38, 2812 (2005)CrossRef
Nikiforov, A., Xiong, Q., Britun, N., Snyders, R., Lu, X.P., Leys, C., Appl. Phys. Express 4, 026102 (2011)CrossRef
Stepowski, D., Cottereau, M.J., Combust. Flame 40, 65 (1981)CrossRef
Williams, R.L., Crosley, D.R., J. Chem. Phys. 104, 6507 (1996)CrossRef
Bruggeman, P., Schram, D.C., Plasma Source Sci. Technol. 19, 045025 (2010)CrossRef
Liu, D.X., Bruggeman, P., Iza, F., Rong, M.Z., Kong, M.G., Plasma Source Sci. Technol. 19, 025018 (2010)CrossRef
Kutepov, A.M., Zaharov, A.G., Maksimov, A.I., Vakuumno-Plazmennoe I Plazmenno-Rastvornoe Modifitsirovanie Polimernykh Materialov (Nauka, Russia, 2004), p. 496, ISBN: 5-02-006484-X [in Russian]Google Scholar
Wysing, I.J., Jeffries, J.B., Crosley, D.R., J. Chem. Phys. 92, 5218 (1990)CrossRef
Novicki, S., Krenos, J., J. Chem. Phys. 89, 7031 (1988)CrossRef
Ricard, A., Decomps, Ph., Massines, F., Surf. Coat. Technol. 112, 1 (1999)CrossRef
Neau, A., Al Khalili, A., Rosen, S., Le Padellec, A., Derkatch, A.M., Shi, W., Vikor, L., Larsson, M., J. Chem. Phys. 113, 1762 (2000)CrossRef