Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:21:36.202Z Has data issue: false hasContentIssue false

Laser fabrication of various polymer microoptical components

Published online by Cambridge University Press:  09 May 2012

M. Malinauskas*
Affiliation:
Department of Quantum Electronics, Physics Faculty, Laser Nanopolymerization Laboratory, Laser Nanophotonics Group, Laser Research Center, Vilnius University, Saulėtekio avenue 9, 10222 Vilnius, Lithuania
A. Žukauskas
Affiliation:
Department of Quantum Electronics, Physics Faculty, Laser Nanopolymerization Laboratory, Laser Nanophotonics Group, Laser Research Center, Vilnius University, Saulėtekio avenue 9, 10222 Vilnius, Lithuania
K. Belazaras
Affiliation:
Department of Quantum Electronics, Physics Faculty, Laser Nanopolymerization Laboratory, Laser Nanophotonics Group, Laser Research Center, Vilnius University, Saulėtekio avenue 9, 10222 Vilnius, Lithuania
K. Tikuišis
Affiliation:
Department of Quantum Electronics, Physics Faculty, Laser Nanopolymerization Laboratory, Laser Nanophotonics Group, Laser Research Center, Vilnius University, Saulėtekio avenue 9, 10222 Vilnius, Lithuania
V. Purlys
Affiliation:
Department of Quantum Electronics, Physics Faculty, Laser Nanopolymerization Laboratory, Laser Nanophotonics Group, Laser Research Center, Vilnius University, Saulėtekio avenue 9, 10222 Vilnius, Lithuania
R. Gadonas
Affiliation:
Department of Quantum Electronics, Physics Faculty, Laser Nanopolymerization Laboratory, Laser Nanophotonics Group, Laser Research Center, Vilnius University, Saulėtekio avenue 9, 10222 Vilnius, Lithuania
A. Piskarskas
Affiliation:
Department of Quantum Electronics, Physics Faculty, Laser Nanopolymerization Laboratory, Laser Nanophotonics Group, Laser Research Center, Vilnius University, Saulėtekio avenue 9, 10222 Vilnius, Lithuania
*
Get access

Abstract

In this report we present micro/nanostructuring of novel metal isopropoxides-silica containing hybrid sol-gel materials by the femtosecond laser direct writing technique and apply it for the fabrication of various microoptical/nanophotonic components. This approach enables one to photostructure true three-dimensional objects with controlled sub-100 nm spatial definition. Due to self-smoothing effects, surface roughness can be formed below 30 nm making this technique widely applicable for microoptical/nanophotonics devices in visible and near-infra-red wavelengths. After photopolymerization, these materials inherit desired optical properties: high transmittance in the 400–1500 nm spectral range and nearly glass-matching optical refractive index. Doping with organic dyes or quantum dots offers additional functionalities. Fields of applications cover: light guiding, coupling/extraction, trapping, signal processing and transferring, microscopy, biology, etc. In brief, we investigated direct laser writing structurability of these materials and its optimization for manufacturing microoptical/nanophotonic components. We successfully produced microoptical components such as aspheric and Fresnel lenses. We demonstrate the flexibility and reproducibility of this approach to fabricate custom-shaped elements on the tip of the optical fiber, thus producing integrated microoptical devices. The micro/nanostructures were characterized by optical and scanning electron microscopies, and optical profilometry. Their optical functions were measured using a custom-built setup to serve the purpose. The obtained values were in close coincidence to the theoretical values. Further research in the direction of production integrated and multifunctional components to be applied in the fields of photonics, plasmonics and telecommunications as well as optofluidics is currently being carried out.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Maruo, S., Nakamura, O., Kawata, S., Opt. Lett. 22, 132 (1997)CrossRef
Miwa, M., Juodkazis, S., Kawakami, T., Matsuo, S., Misawa, H., Appl. Phys. A 73, 561 (2001)CrossRef
Serbin, J., Egbert, A., Ostendorf, A., Chichkov, B., Houbertz, R., Domann, G., Schulz, J. , Cronauer, C., Frohlich, L., Popall, M., Opt. Lett. 28, 301 (2003)CrossRef
Trull, J., Maigytė, L., Mizeikis, V., Malinauskas, M., Juodkazis, S., Cojocaru, C., Rutkauskas, M., Peckus, M., Sirutkaitis, V., Staliūnas, K., Phys. Rev. A 84, 033812 (2011)CrossRef
Wu, D., Chen, Q.-D., Niu, L.G., Jiao, J., Xia, H., Song, J.-F., Sun, H.-B., IEEE Photon. Technol. Lett. 21, 1535 (2009)CrossRef
Malinauskas, M., Gilbergs, H., Žukauskas, A., Purlys, V., Paipulas, D., Gadonas, R., J. Opt. 12, 1 (2010)
Malinauskas, M., Danilevičius, P., Baltriukienė, D., Rutkauskas, M., Žukauskas, A., Kairytė, Ž., Bičkauskaitė, G., Purlys, V., Paipulas, D., Bukelskienė, V., Gadonas, R., Lith. J. Phys. 50, 75 (2010)CrossRef
Ovsianikov, A., Malinauskas, M., Schlie, S., Chichkov, B., Gittard, S., Narayan, R., Löbler, M., Sternberg, K., Schmitz, K.-P., Haverich, A., Acta Biomater. 7, 967 (2011)CrossRef
Sun, H.-B., Kawata, S., J. Lightwave Technol. 21, 624 (2003)
Daw, R., Finkelstein, J., Nature 442, 367 (2006)CrossRef
Li, J., Jia, B., Gu, M., Optics Express 16, 20073 (2008)CrossRef
Juodkazis, S., Mizeikis, V., Seet, K., Miwa, M., Misawa, H., Nanotechnology 16, 846 (2005)CrossRef
Malinauskas, M., Danilevičius, P., Juodkazis, S., Optics Express 19, 5602 (2011)CrossRef
Wang, I., Bouriau, M., Baldeck, P., Martineau, C., Andraud, C., Opt. Lett. 27, 1348 (2002)CrossRef
Thiel, M., Fischer, J., Freymann, G., Wegener, M., Appl. Phys. Lett. 97, 221102 (2010)CrossRef
Malinauskas, M., Žukauskas, A., Bičkauskaitė, G., Gadonas, R., Juodkazis, S., Optics Express 18, 10209 (2010)CrossRef
Engelhardt, S., Hu, Y., Seiler, N., Riester, D., Meyer, W., Küger, H., Wehner, M., Bremus-Köbberling, E., Gillner, A., Poprawe, R., “3D-microfabrication of polymer-protein hybrid structures with a q-switched microlaser”, in Proc. LPM 2010, Stuttgart, 2010, pp. 14
Zhu, X., Xu, Y., Yang, S., Optics Express 15, 16546 (2007)CrossRef
Stankevičius, E., Malinauskas, M., Gedvilas, M., Voisiat, B., Raciukaitis, G., J. Mater. Sci. 17, 244 (2011)
Nguyen, L., Straub, M., Gu, M., Adv. Funct. Mater. 15, 209 (2005)CrossRef
Dong, X.-Z., Zhao, Z.-S., Duan, X.-M., Appl. Phys. Lett. 92, 091113 (2008)CrossRef
Teh, W., Dürig, U., Salis, G., Harbers, R., Drechsler, U., Mahrt, R., Smith, C., Güntherodt, H.-J., Appl. Phys. Lett. 84, 4095 (2004)CrossRef
Ovsianikov, A., Shizhou, X., Farsari, M., Vamvakaki, M., Fotakis, C., Chichkov, B., Optics Express 17, 2143 (2009)CrossRef
Ovsianikov, A., Viertl, J., Chichkov, B., Oubaha, M., MacCraith, B., Sakellari, I., Giakoumaki, A., Gray, D., Vamvakaki, M., Farsari, M., Fotakis, C., ACS Nano 2, 2257 (2008)CrossRef
Farsari, M., Vamvakaki, M., Chichkov, B., J. Opt. 12, 124001 (2010)CrossRef
Wu, D., Wu, S.-Z., Niu, L.-G., Chen, Q.-D., Wang, R., Song, J.-F., Fang, H.-H., Sun, H.-B., Appl. Phys. Lett. 97, 1 (2010)
Li, Y., Yu, Y., Guo, L., Wu, S., Chen, C., Niu, L., Li, A., Yang, H., J. Opt. 12, 1 (2010)
Prasciolu, M., Cojoc, D., Cabrini, S., Businaro, L., Candeloro, P., Tormen, M., Kumar, R., Liberale, C., Degiorgio, V., Gerardino, A., Gigli, G., Pisignano, D., Fabrizio, E.D., Cingolani, E., Microelectron. Eng. 67–68, 169 (2003)CrossRef
Schiappelli, F., Kumar, R., Prasciolu, M., Cojoc, D., Cabrini, S., Vittorio, M.D., Visimberga, G., Gerardino, A., Degiorgio, V., Fabrizio, E.D., Microelectron. Eng. 73–74, 397 (2004)CrossRef
Liberale, C., Cojoc, G., Candeloro, P., Das, G., Gentile, F., Angelis, F., Fabrizio, E.D., IEEE Photon. Technol. Lett. 22, 474 (2010)CrossRef
Malinauskas, M., Žukauskas, A., Purlys, V., Belazaras, K., Momot, A., Paipulas, D., Gadonas, R., Piskarskas, A., Gilbergs, H., Gaidakivičiūtė, A., Sakellari, I., Farsari, M., Juodkazis, S., J. Opt. 12, 124010 (2010)CrossRef
Malinauskas, M., Gaidukevičiūtė, A., Purlys, V., Žukauskas, A., Sakellari, I., Kambouraki, E., Candiani, A., Pissadakis, S., Gadonas, R., Piskarskas, A., Fotakis, C., Vamvakaki, M., Farsari, M., Metamaterials 5, 135 (2011)CrossRef
Ovsianikov, A., Gaidukevičiūtė, A., Chichkov, B., Oubaha, M., MacCraith, B., Sakellari, I., Giakoumaki, A., Gray, D., Vamvakaki, M., Farsari, M., Fotakis, C., Laser Chem. 2008, 1 (2008)CrossRef
Sakellari, I., Gaidukevičiūtė, A., Giakoumaki, A., Gray, D., Fotakis, C., Farsari, M., Vamvakaki, M., Reinhardt, C., Ovsianikov, A., Chichkov, B., Appl. Phys. A 100, 359 (2010)CrossRef
Kallepalli, D., Desai, N., Soma, V., Appl. Opt. 49, 2475 (2010)CrossRef
Malinauskas, M., Purlys, V., Rutkauskas, M., Gaidukevičiūtė, A., Gadonas, R., Lith. J. Phys. 50, 201 (2010)CrossRef
Takada, K., Sun, H.-B., Kawata, S., Appl. Phys. Lett. 86, 071122 (2005)CrossRef
Malinauskas, M., Bičkauskaitė, G., Rutkauskas, M., Paipulas, D., Purlys, V., Gadonas, R., Lith. J. Phys. 50, 135 (2010)CrossRef
Bass, M., in Handbook of Optics, Optical Society of America (1995)
Malinauskas, M., Brasselet, E., Juodkazis, S., SPIE Newsroom (2011)Google Scholar
Brasselet, E., Malinauskas, M., Žukauskas, A., Juodkazis, S., Appl. Phys. Lett. 97, 211108 (2010)CrossRef
Malinauskas, M., Gilbergs, H., Žukauskas, A., Belazaras, K., Purlys, V., Rutkauskas, M., Bičkauskaitė, G., Momot, A., Paipulas, D., Gadonas, R., Juodkazis, S., Piskarskas, A., Proc. SPIE 7716, 77160A (2010)CrossRef