Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T17:12:13.331Z Has data issue: false hasContentIssue false

Investigation on optical and physico-chemical properties of LPCVD SiOxNy thin films

Published online by Cambridge University Press:  05 June 2014

Bessem Kaghouche*
Affiliation:
LEMEAMED Laboratory, Electronics Department, Constantine 1 University, 25000 Constantine, Algeria
Farida Mansour
Affiliation:
LEMEAMED Laboratory, Electronics Department, Constantine 1 University, 25000 Constantine, Algeria
Christine Molliet
Affiliation:
CNRS, LAAS, 7 Avenue du Colonel Roche, 31400 Toulouse, France Université de Toulouse, UPS, LAAS, 31400 Toulouse, France
Bernard Rousset
Affiliation:
CNRS, LAAS, 7 Avenue du Colonel Roche, 31400 Toulouse, France Université de Toulouse, UPS, LAAS, 31400 Toulouse, France
Pierre Temple-Boyer
Affiliation:
CNRS, LAAS, 7 Avenue du Colonel Roche, 31400 Toulouse, France Université de Toulouse, UPS, LAAS, 31400 Toulouse, France
*
Get access

Abstract

In this work, the correlation between BEMA model and FTIR analysis was employed to investigate the chemical composition of silicon oxynitride (SiOxNy) films deposited by low pressure chemical vapour deposition (LPCVD) technique at temperature of 850 °C from nitrous oxide N2O, ammonia NH3 and dichlorosilane SiH2Cl2. Different stoichiometries were obtained for different values of relative gas flow ratio NH3/N2O while keeping the SiH2Cl2 flow constant. The optical properties were studied using spectroscopic ellipsometry. Apart from films thickness, their refractive index as well as their SiO2 and Si3N4 volume fractions were deduced using the Bruggeman effective medium approximation (BEMA) model. It was found that the refractive index increases from 1.45 to 1.60 with increasing nitrogen incorporation. The Fourier Transform Infrared spectroscopy was carried out to study the evolution of chemical bonding of LPCVD SiOxNy films. In order to improve the qualitative analysis of their Si-N and Si-O vibrational modes, a correlation between Fourier transform infrared and spectroscopic ellipsometry measurements was established. A shift of infrared peaks position with the increase of relative gas flow ratio is observed. Furthermore, the calculated areas of absorption bands were used to estimate the SiOxNy stoichiometry. This quantitative analysis was proved with an adequate method in the literature. We found a decrease of x values from 1.94 to 1.26 and an increase of y from 0.04 to 0.49, when the NH3/N2O gas flow ratio increases. This behavior was explained by the increase of nitrogen content as well as the decrease of oxygen content in the SiOxNy film.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brinkmann, N., Sommer, D., Micard, G., Hahn, G., Terheiden, B., Sol. Energy Mater. Sol. Cells 108, 180 (2013)CrossRef
Nakanishi, Y., Kato, K., Omoto, H., Tomioka, T., Takamatsu, A., Thin Solid Films 520, 3862 (2012)CrossRef
Hallamn, B., Tjahjono, B., Wenham, S., Sol. Energy Mater. Sol. Cells 96, 173 (2012)CrossRef
Godinho, V., Denisov, V.N., Mavrin, B.N., Novikova, N.N., Vinogradov, E.A., Yakovlev, V.A., Fernández-Ramos, C., Jiménez de Haro, M.C., Fernández, A., Appl. Surf. Sci. 256, 156 (2009)CrossRef
Halova, E., Alexandrova, S., Szekeres, A., Modreanu, M., Microelectron. Reliab. 45, 982 (2005)CrossRef
Choi, H.Y., Wong, H., Filip, V., Sen, B., Kok, C.W., Chan, M., Poon, M.C., Thin Solid Films 504, 7 (2006)CrossRef
Dupuis, J., Fourmond, E., Ballutaud, D., Bererd, N., Lemiti, M., Thin Solid Films 519, 1325 (2010)CrossRef
Hajji, B., Temple-Boyer, P., Olivie, F., Martinez, A., Thin Solid Films 354, 9 (1999)CrossRef
Sharmaa, S.-K., Barthwal, S., Singhd, V., Kumare, A., Prabhat, K., Dwivedi, K., Prasadg, B., Kumarg, D., Micron 44, 339 (2013)CrossRef
Mohamed, S.H., Physica B 406, 211 (2011)CrossRef
Aspnes, D.E., Thin Solid Films 89, 249 (1982)CrossRef
Temple-Boyer, P., Hajji, B., Alay, J.L., Morante, J.R., Martinez, A., Sens. Actuat. 74, 52 (1999)CrossRef
Radoi, R., Gherasim, C., Dinescu, M., J. Alloys Compd. 286, 309 (1999)CrossRef
Rivory, J., Thin Solid Films 313–314, 333 (1998)CrossRef
Hartel, A.M., Hiller, D., Gutsch, S., Löper, P., Estradé, S., Peiró, F., Garrido, B., Zacharias, M., Thin Solid Films 520, 121 (2011)CrossRef
Morales, A., Barretoa, J., Domınguez, C., Rieraa, M., Aceves, M., Carrilloc, J., Physica E 38, 54 (2007)CrossRef
Patil, L.S., Pandey, R.K., Bange, J.P., Gaikwad, S.A., Gautam, D.K., Opt. Mater. 27, 663 (2005)CrossRef
Bosch, S., Ferré-Borrull, J., Leinfellner, N., Canillas, A., Surf. Sci. 453, 9 (2000)CrossRef
Palik, E.D., Handbook of Optical Constants of Solids (Academic Press, San Diego, USA, 1998)Google Scholar
Szekeres, A., Alexandrova, S., Modreanu, M., Cosmin, P., Gartner, M., Vacuum 61, 205 (2001)CrossRef
Dupuis, J., Fourmond, E., Lelièvre, J.F., Ballutaud, D., Lemiti, M., Thin Solid Films 516, 6954 (2008)CrossRef
Liao, J.-H., Hsieh, J.-Y., Lin, H.-J., Tang, W.-Y., Chiang, C.-L., Lo, Y.-S., Wu, T.-B., Yang, L.-W., Yang, T., Chen, K.-C., Lu, C.-Y., J. Phys. D: Appl. Phys. 42, 175102 (2009)CrossRef
Bedjaoui, M., Despax, B., Thin Solid Films 518, 4142 (2010)CrossRef
Alayo, M.I., Criado, D., Gonҫalves, L.C.D., Pereyra, I., J. Non-Cryst. Solids 338–340, 76 (2004)CrossRef
Kapoor, V.J., Tun, R.A., Xu, D., Bailey, R.S., IEEE Trans. Compon. Packag. Manufact. Technol. 17, 367 (1994)CrossRef
Rostaing, J.C., Cros, Y., Gujrathi, S.C., Poulain, S., J. Non-Cryst. Solids 97, 98, 1051 (1987)CrossRef
Bustarret, E., Bensouda, M., Habrard, M.C., Bruyere, J.C., Phys. Rev. B 38, 8171 (1988)CrossRef
Zacharias, M., Driisedau, T., Panckow, A., Freistedt, H., Garke, B., J. Non-Cryst. Solids 169, 29 (1994)CrossRef
Bohne, W., Röhrich, J., Schöpke, A., Selle, B., Sieber, I., Fuhs, W., del Prado, A., San Andrés, E., Mártil, I., González-Díaz, G., Nucl. Instrum. Methods Phys. Res. B 217, 237 (2004)CrossRef