Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T21:25:39.378Z Has data issue: false hasContentIssue false

Investigation of morphology, electrical behavior (AC and DC) and CO2 gas sensitivity of porous silicon deposited with nanolayers of bromo aluminum phthalocyanine

Published online by Cambridge University Press:  25 May 2012

M.E. Azim-Araghi
Affiliation:
Applied Physics Division, Physics Department, Tarbiat Moallem University, 43 Mofateh avenue, Tehran, Islamic Republic of Iran
Z. Bisadi*
Affiliation:
Applied Physics Division, Physics Department, Tarbiat Moallem University, 43 Mofateh avenue, Tehran, Islamic Republic of Iran
*
Get access

Abstract

The AC and DC electrical properties of sandwich devices fabricated with silicon (Si), porous silicon (PSi) and nanolayers of bromo aluminum phthalocyanine with aluminum electrodes (Al/Si/Al, Al/Si/PSi/Al, Al/Si/BrAlPc/Al and Al/Si/PSi/BrAlPc/Al) were examined over the voltage, frequency and temperature range of 0–11 mV, 102–105 Hz and 303–423 K respectively. Morphology of the samples was studied via scanning electron microscope (SEM) images and X-ray diffraction (XRD) micrographs. Capacitance is practically independent of frequency (f) in the range of 102–104 Hz, whereas it is extremely frequency dependent for f > 104 Hz. Dissipation factor decreased with increasing frequency to a minimum value and increased noticeably thereafter. Capacitance and dissipation factor are almost independent of temperature; capacitance increases with increasing temperature for T > 380 K. The AC electrical behavior of sandwich devices has been shown to be in agreement with the model of Goswami and Goswami. According to our data the Al contact in sandwich devices is of ohmic type and the tunneling mechanism is applicable in explaining the DC conduction process. The Al/Si/PSi/BrAlPc/Al device, compared to other devices, exhibits the highest sensitivity to CO2.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boarino, L., Baratto, C., Geobaldo, F., Amato, G., Comini, E., Rossi, A.M., Faglia, G., Lerondel, G., Sberveglieri, G., Mat. Sci. Eng. B 69–70, 210 (2000)CrossRef
Baratto, C., Comini, E., Faglia, G., Sberveglieri, G., Di Francia, G., De Filippo, F., La Ferrara, V., Quercia, L., Lancellotti, L., Sens. Actuators B: Chem. 65, 257 (2000)CrossRef
Chakane, S., Gokarna, A., Bhoraskar, S.V., Sens. Actuators B: Chem. 92, 1 (2003)CrossRef
Galeazzo, E., Peres, H.E.M., Santos, G., Peixoto, N., Ramirez-Fernandez, F.J., Sens. Actuators B: Chem. 93, 384 (2003)CrossRef
Khoshnevis, S., Dariani, R.S., Azim-Araghi, M.E., Bayindir, Z., Robbie, K., Thin Solid Films 515, 2650 (2006)CrossRef
Kanungo, J., Saha, H., Basu, S., Sens. Actuators B: Chem. 147, 145 (2010)CrossRef
Herino, R., in Properties of Porous Silicon, edited by Canham, L. (INSPEC, London, 1997), pp. 6676Google Scholar
Barillaro, G., Nannini, A., Pieri, F., Sens. Actuators B: Chem. 93, 263 (2003)CrossRef
Furjes, P., Kovacs, A., Ducso, C., Adam, M., Muller, B., Mescheder, U., Sens. Actuators B: Chem. 95, 140 (2003)CrossRef
Letant, S.E., Content, S., Tan, T.T., Zenhausem, F., Sailor, M.J., Sens. Actuators B: Chem. 69, 193 (2000)CrossRef
Holec, T., Chvojka, T., Jelinek, I., Jindoic, J., Nimec, I., Pelant, I., Valenta, J., Dian, J., Mater. Sci. Eng. C, Biomim. Mater., Sens. Syst. 19, 251 (2002)CrossRef
Lee, Y.L., Hsiao, C.Y., Chang, C.H., Yang, Y.M., Sens. Actuators B: Chem. 94, 169 (2003)CrossRef
Azim-Araghi, M.E., Krier, A., Appl. Surf. Sci. 119, 260 (1997)CrossRef
Krier, A., Azim-Araghi, M.E., J. Phys. Chem. Solids 58, 711 (1997)CrossRef
Azim-Araghi, M.E., Jafari, M.J., Eur. Phys. J. Appl. Phys. 52, 10402 (2010)CrossRef
Desai, R.R., Lakshminarayana, D.L., Patel, P.B., Panchal, C.J., Sens. Actuators B: Chem. 107, 523 (2005)CrossRef
Collins, R.A., Mohammed, K.A., Thin Solid Films 145, 133 (1986)CrossRef
Abass, A.K., Collins, R.A., Krier, A., J. Phys. Chem. Solids 54, 375 (1993)CrossRef
Gould, R.D., Shafai, T.S., Thin Solid Films 373, 89 (2000)CrossRef
Saleh, A.M., Abu-Hilal, A.O., Gould, R.D., Curr. App. Phys. 3, 345 (2003)CrossRef
Atta, A.A., J. Alloys Compd. 480, 564 (2009)CrossRef
Azim-Araghi, M.E., Abbasi, S., J. Optoelectron. Adv. Mat. 12, 1777 (2010)
Lomov, A.A., Bellet, D., Dolino, G., Phys. Stat. Sol. B 190, 219 (1995)CrossRef
Sudesh, T.L., Wijesinghe, L., Li, S.Q., Breese, M.B.H., Blackwood, D.J., Electrochim. Acta 54, 3671 (2009)
Dian, J., Macek, A., Niznansky, D., Nemec, I., Vrkoslav, V., Chvojka, T., Jelinek, I., Appl. Surf. Sci. 238, 169 (2004)CrossRef
Stutzmann, M., Weber, J., Brandt, M.S., Fuchs, H.D., Rosenbauer, M., Deak, P., Hopner, A., Breitschwerdt, A., Adv. Solid State Phys. 32, 179 (1992)CrossRef
Morris, M.C., McMurdie, H.F., Evans, E.H., Paretzkin, B., de Groot, J.H., Hubbard, C.R., Carmel, S.J., Standard X-Ray Diffraction Powder Patterns [Monograph 25 – Section 13] (US Department of Commerce and National Bureau of Standards, Washington DC, 1976)CrossRefGoogle Scholar
Nalwa, H.S., Vasudevan, P., J. Mater. Sci. Lett. 2, 22 (1983)CrossRef
Azim-Araghi, M.E., Campbell, D., Krier, A., Collins, R.A., Semicond. Sci. Technol. 11, 39 (1996)CrossRef
Goswami, A., Goswami, A.P., Thin Solid Films 16, 175 (1973)CrossRef
Hummel, R.E., Electronic Properties of Materials, 4th edn. (Springer, New York, 2011)CrossRefGoogle Scholar
Sussman, A., J. Appl. Phys. 38, 2748 (1967)CrossRef
Bazrafkan, I., Dariani, R.S., Physica B: Condens. Matter 404, 1638 (2009)CrossRef