Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T22:31:26.629Z Has data issue: false hasContentIssue false

Integration of TiO2 nanotube arrays into solid-state dye-sensitized solar cells

Published online by Cambridge University Press:  28 January 2011

J. Bandara*
Affiliation:
Applied Functional Polymers, Department of Macromolecular Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany Institute of Fundamental Studies, Hantana Road, CP, 20000 Kandy, Sri Lanka
K. Shankar
Affiliation:
Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
J. Basham
Affiliation:
Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
H. Wietasch
Affiliation:
Applied Functional Polymers, Department of Macromolecular Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
M. Paulose
Affiliation:
Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
O. K. Varghese
Affiliation:
Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
C. A. Grimes
Affiliation:
Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
M. Thelakkat
Affiliation:
Applied Functional Polymers, Department of Macromolecular Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
Get access

Abstract

In this investigation, transparent TiO2 nanotube arrays prepared on a FTO substrate are employed as 1D nanostructuresproviding elongated direct pathways for electron transport and collection in solid-state dye-sensitized solar cell (SDSC). Donor-antenna (D-A) dyes provide an exciting route for improving the light harvesting efficiency in dye sensitized solar cells owing to their high molar extinction coefficients and the effective spatial separation of charges in the charge-separated state. Hence in this study we fabricated SDSC devices with different thicknesses of transparent TiO2 nanotube array electrodes sensitized with Ru-(II)-donor-antenna dye and spiro-OMeTAD as a hole conductor. At AM 1.5 G, 100 mW/cm2 illumination intensity, a power conversion efficiency of 1.94% was achieved when the TiO2 nanotubes are initially subjected to TiCl4 treatment. Furthermore, a linear increase in the cell current without loss in fill factor is observed for increasing length of TiO2 nanotubes. The structural and morphological characteristics of the transparent TiO2 nanotube arrays as well as the optimal conditions for the fabrication of SDSCs with transparentTiO2 nanotubes on FTO glass are reported.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O'Regan, B. et al., Nature 353, 737 (1991) CrossRef
Thelakkat, M. et al., Adv. Mater. 14, 577 (2002) 3.0.CO;2-S>CrossRef
Kamat, P.V., J. Phys. Chem. C 111, 2834 (2007) CrossRef
van de Lagemaat, J. et al., J. Phys. Chem. B 105, 11194 (2006) CrossRef
Hagfeldt, A. et al., Chem. Rev. 95, 49 (1995) CrossRef
Solbrand, A. et al., J. Phys. Chem. B 101, 2514 (1997) CrossRef
Adachi, M. et al., J. Am. Chem. Soc. 126, 14943 (2004) CrossRef
Law, M. et al., Nat. Mater. 4, 455 (2005) CrossRef
Paulose, M. et al., J. Phys. D: Appl. Phys. 39, 2498 (2006) CrossRef
Adachi, M. et al., J. Electrochem. Soc. 150, G488 (2003) CrossRef
Gopal, K.M. et al., Sol. Energy Mater. Sol. Cells 90, 2011 (2006)
Chen, P. et al., J. Mater. Chem. 19, 5325 (2009) CrossRef
Karthikeyan, C.S. et al., Adv. Mater. 19, 1091 (2007) CrossRef
Karthikeyan, C.S. et al., Sol. Energy Mater. Sol. Cells 91, 432 (2007) CrossRef
Shankar, K. et al., Nano Lett. 8, 1654 (2008) CrossRef
Handa, S. et al., Chem. Commun. 17, 1725 (2007) CrossRef
C.S. Karthikeyan et al., Inorg. Chim. Acta 361, 635 (2008)
Mor, G.K. et al., Adv. Funct. Mater. 15, 1291 (2005) CrossRef
Sommeling, P.M. et al., J. Phys. Chem. B 110, 19191 (2006) CrossRef
O'Regan, B.C. et al., J. Phys. Chem. C 111, 14001 (2007) CrossRef
Schmidt-Mende, L. et al., Thin Solid Films 500, 296 (2006) CrossRef
Yum, J.-H. et al., ChemSusChem 1, 699 (2008) CrossRef
Lancelle-Beltran, E. et al., Chem. Mater. 18, 6152 (2006) CrossRef
Uchida, S. et al., Electrochemistry 70, 418 (2002)
Ohsaki, Y. et al., Phys. Chem. Chem. Phys. 7, 4157 (2005) CrossRef
Zhu, K. et al., Nano Lett. 7, 69 (2007) CrossRef
Jennings, J.R. et al., J. Am. Chem. Soc. 130, 13364 (2008) CrossRef
Schlichthörl, G. et al., J. Phys. Chem. B 130, 782 (1999) CrossRef