Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T10:45:29.531Z Has data issue: false hasContentIssue false

InNx As1-x band gap energy and band bowing coefficient calculation

Published online by Cambridge University Press:  13 December 2007

D. Sentosa
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore, Singapore
X. Tang*
Affiliation:
School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, 639798 Singapore, Singapore
S. J. Chua
Affiliation:
Institute of Materials Research and Engineering (IMRE), 3 Research Link, 117602 Singapore, Singapore
Get access

Abstract

The band gap energies of zinc-blende InNx As1-x alloy as a function of its nitrogen composition have been calculated using the density functional theory. The results agree well with those obtained from experimental results. The minimum band gap energy of InNx As1-x alloy obtained is 70 meV at its N composition of 0.45. The band gap bowing coefficient of InNx As1-x alloy is obtained from the curve fitting of the simulated band gap energy versus the nitrogen composition, x. The band gap bowing coefficient of zinc-blende InNx As1-x alloy is found to be 2.072 ± 0.236 eV. The energy band gap for InN is also correctly predicted from this calculation.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Naoi, H., Naoi, Y., Sakai, S., Solid State Electron. 41, 319 (1997) CrossRef
S. Sakai, T.S. Cheng, T.C. Foxon, T. Sugahara, Y. Naoi, H. Naoi, J. Cryst. Growth 189/190, 471 (1998)
Naoi, H., Shaw, D.M., Naoi, Y., Collins, G.J., Sakai, S., J. Cryst. Growth 222, 511 (2001) CrossRef
Zhou, W., Chua, S.J., Dong, J.R., Teng, J.H., J. Cryst. Growth 242, 15 (2002) CrossRef
Daniltsev, V.M., Drozdov, M.N., Drozdov, Yu.N., Gaponova, D.M., Khrykin, O.I., Murel, A.V., Shashkin, V.I., Vostokov, N.V., J. Cryst. Growth 248, 343 (2003) CrossRef
M. Hao, S. Sakai, T. Sugahara, T.S. Cheng, C.T. Foxon, J. Cryst. Growth 189/190, 481 (1998)
Hung, W.K., Cho, K.S., Chern, M.Y., Chen, Y.F., Shih, D.K., Lin, H.H., Lu, C.C., Yang, T.R., Appl. Phys. Lett. 80, 796 (2002) CrossRef
El-Emawy, A.A., Cao, H.J., Zhmayev, E., Lee, J.H., Zubia, D., Osinski, M., Phys. Stat. Sol. B 228, 263 (2001) 3.0.CO;2-R>CrossRef
Nacir Tit, M.W.C. Dharma-wardana, Appl. Phys. Lett. 76, 3576 (2000)
Yang, T., Nakajima, S., Sakai, S., Jap. J. Appl. Phys. 36, 320 (1997) CrossRef
O'Reilly, E.P., Lindsay, A., Tomić, S., Kamal-Saadi, M., Semicond. Sci. Technol. 17, 870 (2002) CrossRef
Nakajima, S., Ikeda, D., Sakai, S., IPAP Conf. Series 1, 441 (2000)
Wu, J. et al., Solid State Comm. 127, 411 (2003) CrossRef
Vurgaftman, I., Meyer, J.R., J. Appl. Phys. 94, 3675 (2003) CrossRef
Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C., J. Phys.: Condens. Matter 14, 2717 (2002)
Kuo, Y.K., Lin, W.W., Jpn J. Appl. Phys. 41, 73 (2002) CrossRef
Alves, J.L.A., Hebenstreit, J., Scheffler, M., Phys. Rev. B 44, 6188 (1991) CrossRef
Remediakis, I.N., Kaxiras, E., Phys. Rev. B 59, 5536 (1999) CrossRef
Arola, E., Ojanen, J., Komsa, H.P., Rantala, T.T., Phys. Rev. B 72, 045222 (2005) CrossRef
Poykko, S., Puska, M.J., Alatalo, M., Nieminen, R.M., Phys. Rev. B 54, 7909 (1996) CrossRef
H. Eschrig, The fundamentals of density functional theory (B.G. Teubner, Stuttgart, 1996)
Gupta, J.A., Dharma-Wardana, M.W.C., Jurgensen, A, Crozier, E.D., Rehr, J. J., Prange, M., Solid State Comm. 136, 351 (2005) CrossRef
O. Madelung, Semiconductor: Data Handbook (Springer, 2003)
Shih, D.K., Lin, H.H., Sung, L.W., Chu, T.Y., Yang, T.R., Jpn J. Appl. Phys. 42, 375 (2003) CrossRef