Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T10:10:57.589Z Has data issue: false hasContentIssue false

Influence of the disorder on solute dispersion in a flow channel

Published online by Cambridge University Press:  12 July 2007

V. J. Charette
Affiliation:
Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, 1063 Buenos Aires, Argentina
E. Evangelista
Affiliation:
Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, 1063 Buenos Aires, Argentina
R. Chertcoff
Affiliation:
Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, 1063 Buenos Aires, Argentina
H. Auradou
Affiliation:
Laboratoire Fluides, Automatique et Systèmes Thermiques, UMR No. 7608, CNRS, Universités Paris 6 et 11, Bâtiment 502, Campus Paris Sud, 91405 Orsay Cedex, France
J. P. Hulin*
Affiliation:
Laboratoire Fluides, Automatique et Systèmes Thermiques, UMR No. 7608, CNRS, Universités Paris 6 et 11, Bâtiment 502, Campus Paris Sud, 91405 Orsay Cedex, France
I. Ippolito
Affiliation:
Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, 1063 Buenos Aires, Argentina
Get access

Abstract

Solute dispersion is studied experimentally in periodic or disordered arrays of beads in a capillary tube. Dispersion is measured from light absorption variations near the outlet following a steplike injection of dye at the inlet. Visualizations using dye and pure glycerol are also performed in similar geometries. Taylor dispersion is dominant both in an empty tube and for a periodic array of beads: the dispersivity l d increases with the Péclet number Pe respectively as Pe and Pe 0.82 and is larger by a factor of 8 in the second case. In a disordered packing of smaller beads (1/3 of the tube diameter) geometrical dispersion associated to the disorder of the flow field is dominant with a constant value of l d reached at high Péclet numbers. The minimum dispersivity is slightly higher than in homogeneous nonconsolidated packings of small grains, likely due to wall effects. In a weakly disordered packing with the same beads as in the periodic configuration, l d is up to 20 times lower than in the latter and varies as Pe γ with γ = 0.5 or = 0.69 (depending on the fluid viscosity). A simple model accounting for this latter result is suggested.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J. Bear, Dynamics of Fluids in Porous Media (Dover Publications, New York, 1988)
F.A.L. Dullien, Porous media, fluid transport and pore structure, 2nd ed. (Academic Press, New-York, 1991)
Flow and Contaminant Transport in Fractured Rock, edited by J. Bear, C.-F. Tsang, G. de Marsily (Academic Press, New-York, 1993)
M. Sahimi, Flow and Transport in Porous Media and Fractured Rocks: From Classical Methods to Modern Approaches (John Wiley and Sons, New-York, 2005)
J.C. Bacri, J.P. Bouchaud, A. Georges, E. Guyon, J.P. Hulin, N. Rakotomalala, D. Salin, Hydrodynamics of dispersed media, edited by J.P. Hulin, A.M. Cazabat, E. Guyon, F. Carmona (North Holland, Amsterdam, 1990) pp. 249–269
Bruderer, C., Bernabé, Y., Water Resour. Res. 37, 897 (2001) CrossRef
D'Angelo, M.V., Auradou, H., Allain, C., Hulin, J.-P., Phys. Fluids 19, 033103 (2007) CrossRef
Dronfield, D.G., Silliman, S.E., Water Resour. Res. 29, 3477 (1993) CrossRef
Ippolito, I., Daccord, G., Hinch, E.J., Hulin, J.P., J. Contamin. Hydrol. 16, 87 (1994) CrossRef
Detwiler, R.L., Rajaram, H., Glass, R.J., Water. Resour. Res. 36, 1611 (2000) CrossRef
A. Boschan, H. Auradou, I. Ippolito, R. Chertcoff, J.P. Hulin, Water Resour. Res. 43 W03438 (2007)
Wegner, T.H., Karabelas, A.J., Hanratty, T.J., Chem. Eng. Sci. 26, 59 (1971) CrossRef
Chatwin, P.C., J. Fluid Mech. 43, 321 (1970) CrossRef
Golay, M.J.E., Atwood, J.G., J. Chromatogr. 186, 353 (1979) CrossRef
Magnico, P., Chem. Eng. Sci. 58, 5005 (2003) CrossRef
Fried, J.J., Combarnous, M.A., Adv. Hydrosci. 7, 169 (1971) CrossRef
Saffman, P.G., J. Fluid Mech. 6, 321 (1959) CrossRef
Saffman, P.G., J. Fluid Mech. 7, 194 (1960) CrossRef
Koch, D.L., Brady, J.F., J. Fluid Mech. 154, 399 (1985) CrossRef
C. Baudet, E. Guyon, Y. Pomeau, J. Phys. Lett. 46, L-991 (1985)
J. Koplik, Disorder and Mixing, edited by E. Guyon, Y. Pomeau, J.P. Nadal (Kluwer, Dordrecht, the Netherlands, 1988) pp. 123–137
G.I. Taylor, Proc. Roy. Soc. London A 219, 186 (1953)
Aris, R., Proc. Roy. Soc. London A 235, 67 (1956) CrossRef
Koch, D.L., Cox, R.G., Brenner, H., Brady, J.F., J. Fluid Mech. 200, 173 (1989) CrossRef
Salles, J., Thovert, J.-F., Delannay, R., Prevors, L., Auriault, J.-L., Adler, P.M., Phys. Fluids A 5, 2348 (1993) CrossRef
Maier, R.S., Kroll, D.M., Bernard, R.S., Howington, S.E., Peters, J.F., Davis, H.T., Phys. Fluids 12, 2065 (2000) CrossRef
Baudet, C., Chertcoff, R., Hulin, J-P., Acad, C.R.. Sci. Paris, II 305, 429 (1987)
W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, UK, 1995), Chap. 3
Coats, K.H., Smith, B.D., Soc. Pet. Eng. J. Trans. AIME 231, 73 (1964) CrossRef
J. Villermaux in Percolation processes, theory and applications, edited by A. Rodrigues, D. Tondeur (Kluwer, Dordrecht, 1981), pp. 83–140
N-W. Han, J. Bhakta, R.G. Carbonell, AIChE 31, 277 (1985) CrossRef
Mueller, G.E., Powder Technol. 72, 269 (1992) CrossRef