Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:14:48.259Z Has data issue: false hasContentIssue false

Influence of Fe/Cr on nitrogen doped carbon nanotube growth

Published online by Cambridge University Press:  30 April 2008

C. P. Ewels*
Affiliation:
IMN, UMR6502, CNRS-Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes, France LPS, UMR8502, CNRS-Université Paris Sud, bâtiment 510, 91405 Orsay, France
A. Gloter
Affiliation:
LPS, UMR8502, CNRS-Université Paris Sud, bâtiment 510, 91405 Orsay, France
T. Minea
Affiliation:
LPGP, UMR 8578, CNRS-Université Paris Sud, bâtiment 210, 91405 Orsay, France
B. Bouchet-Fabre
Affiliation:
LFP, CEA/DSM/DRECAM/SPAM - CNRS URA 2453, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
S. Point
Affiliation:
IMN, UMR6502, CNRS-Université de Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes, France
C. Colliex
Affiliation:
LPS, UMR8502, CNRS-Université Paris Sud, bâtiment 510, 91405 Orsay, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using electron energy loss spectroscopy in a 100 kV VG scanning transmission electron microscope we study nitrogen doped carbon nanotubes grown via electron cyclotron resonance (ECR) microwave plasma techniques. The process is controlled by direct current (dc) biasing the grid separating the ECR source and the substrate. We show that plasma induced sputtering of the ECR source wall (stainless steel) can lead to significant iron and chromium contamination of growth samples. We identify various Fe, Cr, Ni nitride phases, and propose a growth model based on nitridation-induced metal segregation of steel based FeCrN alloys. Trace Cr doping of nanotube catalysts appears a promising route for introducing large nitrogen concentrations into both single and multi-walled nanotubes and may accelerate nanotube growth rates.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2008

References

Minea, T.M., Point, S., Gohier, A., Granier, A., Surf. Coat. Technol. 200, 1101 (2005) CrossRef
Minea, T.M., Point, S., Granier, A., Touzeau, M., Appl. Phys. Lett. 85, 1244 (2004) CrossRef
Gohier, A., Minea, T.M., Djouadi, A.M., Granier, A., Dubosc, M., Chem. Phys. Lett. 421, 242 (2006) CrossRef
T.M. Minea, S. Point, G. Popa, M. Touzeau, A. Granier, Proc. 17 ESCAMPIG, Constanta, Romania, September 1–5 (2004), 271
Point, S., Minea, T.M., Bouchet-Fabre, B., Granier, A., Turban, G., Diam. Relat. Mater. 14, 891 (2005) CrossRef
Gloter, A., Douiri, A., Tence, M., Colliex, C., Ultramicroscopy 96, 385 (2003) CrossRef
M. Sennour, Ph.D. thesis, INSA, Lyon (2002)
K. Volz, M. Kiuchi, W. Ensinger, Surf. Coat. Technol. 108-109, 303 (1998)
Grabke, H.J., Mat. Corr. 56, 384 (2005) CrossRef
Chang, S.Y., Krupp, U., Christ, H.J., Mater. Sci. Eng. A 301, 196-206 (2001) CrossRef
Hosmani, S.S., Schacher, R.E., Mittemeijer, E.J., Mater. Sci. Tech.-Lond. 21, 113 (2005) CrossRef
Christ, H.-J., Chang, S.-Y., Krupp, U., Mat. Corr. 54, 887 (2003) CrossRef