Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T16:26:19.697Z Has data issue: false hasContentIssue false

Incomplete oxidation in back channel of GaInZnO thin-film transistor grown by rf sputtering

Published online by Cambridge University Press:  13 April 2011

O. Seo
Affiliation:
Department of Electrical and Computer Engineering, Ajou University, 443-749 Suwon, Korea
J. Chung
Affiliation:
Analysis Engineering Center, Samsung Advanced Institute of Technology, 440-600 Suwon, Korea
J. Jo*
Affiliation:
Department of Electrical and Computer Engineering, Ajou University, 443-749 Suwon, Korea
Get access

Abstract

Thin-film transistors (TFT's) may have a low-quality back channel in addition to the high-quality main channel. The presence of the back channel can deteriorate TFT turn-off characteristics. We studied properties of the back channel in bottom-gate GaInZnO TFT's grown by rf sputtering. X-ray photoelectron spectroscopy (XPS) results confirmed existence of low-quality oxide in the back channel. We observed that 200 °C annealing increased binding energies of metals and oxygen on the surface. This energy increase can be explained as a result of tighter bonding between metals and oxygen. When the top surface of GaInZnO was removed by Ar etching, XPS did not show such energy increase after the annealing. XPS also showed that the top surface has significantly higher In concentration compared to the bulk.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M., Hosono, H., Jpn J. Appl. Phys. 45, 4303 (2006) CrossRef
Dehuff, N.L., Kettenring, E.S., Hong, D., Chiang, Q.Q., Wager, J.F., Hoffman, R.L., J. Appl. Phys. 97, 064505 (2005) CrossRef
Martins, R., Barquinha, P., Ferreira, I., Pereira, L., Goncalves, G., Fortunato, E., J. Appl. Phys. 101, 044505 (2007) CrossRef
Chen, T.C., Chang, T.C., Tsai, C.T., Hsieh, T.Y., Chen, S.C., Lin, C.S., Hung, M.C., Tu, C.H., Chang, J.J., P.L. Chen Appl. Phys. Lett. 97, 112104 (2010) CrossRef
Lim, W., Douglas, E.A., Norton, D.P., Pearton, S.J., Ren, F., Heo, Y.W., Son, S.Y., Yuh, J.H., Appl. Phys. Lett. 96, 053510 (2010) CrossRef
Lee, S., Park, S., Kim, S., Jeon, Y., Jeon, K., Park, J., Park, J., Song, I., Kim, C.J., Park, Y., Kim, D.M., Kim, D.H., IEEE Electron. Device Lett. 31, 231 (2010)
Jo, J., Seo, O., Choi, H., Lee, B., Appl. Phys. Express 1, 041202 (2008) CrossRef
Trani, F., Causa, M., Ninno, D., Cantlle, G., Barone, V., Phys. Rev. B 77, 245410 (2008) CrossRef
J.F. Moulder, J. Chastain, R.C. King, Handbook of X-ray photoelectron spectroscopy (Physical Electronics, Minnesota, USA, 1995), p. 223
Hollinger, G., Bergignat, E., Joseph, J., Robach, Y., J. Vac. Sci. Technol. A 6, 2082 (1985) CrossRef
Cao, H.T., Pei, Z.L., Gong, J., Sun, C., Huang, R.F., Wen, L.S., J. Solid State Chem. 177, 1480 (2004) CrossRef
Tay, Y.Y., Li, S., Sun, C.Q., Chen, P., Appl. Phys. Lett. 88, 173118 (2006) CrossRef
Vasco, E., Bohme, O., Roman, E., J. Phys. Chem. C 111, 3505 (2007) CrossRef
Guan, H., Xia, X., Zhang, Y., Gao, F., Li, W., Wu, G., J. Phys.: Condens. Matter 20, 292202 (2008)
Jo, J., Choi, H., Yun, J., Kim, H., Seo, O., Lee, B., Thin Solid Films 517, 6337 (2009) CrossRef