Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T21:00:32.701Z Has data issue: false hasContentIssue false

Improved polymer solar cell performance by engineering of cathode interface

Published online by Cambridge University Press:  18 August 2011

J.K. Baral*
Affiliation:
Department of Physics, Concordia University, Montréal, Québec, Canada NanoQAM, Département d’informatique, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada Optical-Bio Microsystems Laboratory, Mechanical & Industrial Engineering Department, Concordia University, Montréal, Québec, Canada
R. Izquierdo*
Affiliation:
NanoQAM, Département d’informatique, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada
M. Packirisamy
Affiliation:
Optical-Bio Microsystems Laboratory, Mechanical & Industrial Engineering Department, Concordia University, Montréal, Québec, Canada
V.-V. Truong
Affiliation:
Department of Physics, Concordia University, Montréal, Québec, Canada
Get access

Abstract

By engineering the interface between the intermediate photoactive layer and the cathode aluminum (Al) electrode, through the introduction of ultra-thin layers of various materials, in a standard bulk heterojunction (BHJ) polymer solar cell (PSC) fabricated of regioregular poly(3-hexylthiophene) (rr-P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the power conversion efficiency (PCE) has been effectively improved. The devices fabricated using individual single interlayer of bathocuproine (BCP), lithium fluoride (LiF) and Buckminster fullerene C60 have shown optimal efficiencies of ~2.40%, ~3.21% and ~1.92% respectively. Further improvement of the photovoltaic efficiency was achieved by introducing a composite bilayer made of LiF in combination with BCP as well as with C60 at the BHJ/cathode interface. The best results were obtained by interposing a 9 nm of C60 interlayer in combination with a 0.9 nm thick LiF layer, with the PCE of the PV cells being effectively increased up to 3.94% which represents an improvement of 23% as compared to the standard device with LiF interlayer alone. The photocurrent density (Jsc) versus voltage (V) characteristic curves shows that the increase of the efficiency is essentially due to an increase in Jsc. Moreover, all the sets of devices fabricated using various interlayers over a certain range of thickness exhibit an optimum PCE that is inversely proportional to the series resistance of the PV cells. We presume that interposing a C60/LiF layer at the interface could repair the poor contact at the electron acceptor/cathode interface and improve the charge career extraction from the BHJ.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

For general information about solar energy, consult the International Energy Agency Photovoltaic Power Systems Programme at www.iea-pvps.org (2010)
Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y., Nat. Mater. 4, 864 (2005)CrossRef
Peet, J., Heeger, A.J., Bazan, G.C., Acc. Chem. Res. 42, 1700 (2009)CrossRef
Kippelen, B., Brédas, J.-L., Energy Environ. Sci. 2, 251 (2009)CrossRef
Peet, J., Kim, J.Y., Coates, N.E., Ma, W.L., Moses, D., Heeger, A.J., Bazan, G.C., Nat. Mater. 6, 497 (2007)CrossRef
Mayer, A.C., Scully, S.R., Hardin, B.E., Rowell, M.W., McGehee, M.D., Mater. Today 10, 28 (2007)CrossRef
Hadipour, A., de Boer, B., Blom, P.W.M., Adv. Funct. Mater. 18, 169 (2008)CrossRef
Chen, L.-M., Xu, Z., Hong, Z., Yang, Y., J. Mater. Chem. 20, 2575 (2010)CrossRef
Barabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N.S., Appl. Phys. Lett. 80, 1288 (2002)CrossRef
Peumans, P., Bulovic, V., Forrest, S.R., Appl. Phys. Lett. 76, 2650 (2000)CrossRef
de Villers, B.T., Tassone, C.J., Tolbert, S.H., Schwartz, B.J., J. Phys. Chem. C 113, 18978 (2009)CrossRef
Lee, J.Y., Appl. Phys. Lett. 88, 073512 (2006)CrossRef
Gao, D., Helander, M.G., Wang, Z.B., Puzzo, D.P., Greiner, M.T., Lu, Z.H., Adv. Mater. 22, 5404 (2010)CrossRef
Dennler, G., Scharber, M.C., Brabec, C.J., Adv. Mater. 21, 1323 (2009)CrossRef
Brabec, C.J., Gowrisanker, S., Halls, J.J.M., Laird, D., Jia, S., Williams, S.P., Adv. Mater. 22, 3839 (2010)CrossRef
Lee, S.-H., Kim, J.-H., Shim, T.-H., Park, J.-G., Electron. Mater. Lett. 5, 47 (2009)CrossRef
Wang, Z.B., Helander, M.G., Greiner, M.T., Lu, Z.H., Appl. Phys. Lett. 95, 043302 (2009)CrossRef
Choong, V., Park, Y., Gao, Y., Wehrmeister, T., Mullen, K., Hsieh, B.R., Tang, C.W., Appl. Phys. Lett. 69, 1492 (1996)CrossRef
Dienel, T., Proehl, H., Forker, R., Leo, K., Fritz, T., J. Phys. Chem. C 112, 9056 (2008)CrossRef
Hong, Z.R., Huang, Z.H., Zeng, X.T., Thin Solid Films 515, 3019 (2007)CrossRef
Rand, B.P., Li, J., Xue, J.G., Holmes, R.J., Thompson, M.E., Forrest, S.R., Adv. Mater. 17, 2714 (2005)CrossRef
Yapi, A.S., Toumi, L., Lare, Y., Soto, G.M., Cattin, L., Toubal, K., Djafri, A., Morsli, M., Khelil, A., Valle, M.A.D., Bernède, J.-C., Eur. Phys. J. Appl. Phys. 50, 30403 (2010)CrossRef
Hung, L.S., Tang, C.W., Mason, M.G., Appl. Phys. Lett. 70, 152 (1997)CrossRef
Matsumura, M., Furukawa, K., Jinde, Y., Thin Solid Films 331, 96 (1998)CrossRef
Reese, M.O., White, M.S., Rumbles, G., Ginley, D.S., Shaheen, S.E., Appl. Phys. Lett. 92, 053307 (2008)CrossRef
Peumans, P., Forrest, S.R., Appl. Phys. Lett. 79, 126 (2001)CrossRef
Paci, B., Generosi, A., Albertini, V.R., Perfetti, P., de Bettignies, R., Leroy, J., Firon, M., Sentein, C., Appl. Phys. Lett. 89, 043507 (2006)CrossRef
Kumar, A., Li, G., Hong, Z., Yang, Y., Nanotechnology 20, 165202 (2009)CrossRef
Quiles, M.C., Ferenczi, T., Agostinelli, T., Etchegoin, P.G., Kim, Y., Anthopoulos, T.D., Stavrinou, P.N., Bradley, D.D.C., Nelson, J., Nat. Mater. 7, 158 (2008)CrossRef
Krebs, F.C., Alstrup, J., Spangaard, H., Larsen, K., Kold, E., Sol. Energy Mater. Sol. Cells 83, 293 (2004)CrossRef
Lee, J.Y., Mol. Cryst. Liq. Cryst. 499, 11/[333] (2009)
Hains, A.W., Marks, T.J., Appl. Phys. Lett. 92, 023504 (2008)CrossRef
Wang, D.H., Lee, H.K., Choi, D.-G., Park, J.H., Park, O., Appl. Phys. Lett. 95, 043505 (2009)CrossRef
Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A.J., Adv. Funct. Mater. 15, 1617 (2005)CrossRef
Dang, M.-T., Wantz, G., Hirsch, L., Parneix, J.-P., ECS Trans. 23, 449 (2009)CrossRef