Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T08:41:10.598Z Has data issue: false hasContentIssue false

Hydrodynamic study of a microwave plasma torch

Published online by Cambridge University Press:  28 October 2011

K. Gadonna
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, UMR CNRS/UPS 8578, Orsay, France
O. Leroy
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, UMR CNRS/UPS 8578, Orsay, France
T. Silva
Affiliation:
Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
P. Leprince
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, UMR CNRS/UPS 8578, Orsay, France
C. Boisse-Laporte
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, UMR CNRS/UPS 8578, Orsay, France
L.L. Alves*
Affiliation:
Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal
*
Get access

Abstract

A hydrodynamic model was developed to simulate the flow and the heat transfer with the gas/plasma system produced by a microwave-driven (500–900 W at 2.45 GHz) axial injection torch, running in atmospheric pressure helium at 3–9 L min−1 input gas flows. The model solves the Navier-Stokes’ equations, including the effect of the plasma upon the momentum and the energy balance, in order to obtain the spatial distributions of the gas velocity and temperature. The model predicts average gas temperatures of 2500–3500 K, in the same range of those obtained by optical measurements. Simulations show that the plasma influences the gas flow path and temperature, promoting an efficient power transfer.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moisan, M., Sauvé, G., Zakrzewski, Z., Hubert, J., Plasma Source Sci. Technol. 3, 584 (1994)CrossRef
Tendero, C., Tixier, C., Tristant, P., Desmaison, J., Leprince, P., Spectrochim. Acta B 61, 2 (2006)CrossRef
Rubio, S.J., Quintero, M.C., Rodero, A., Fernandez Rodriguez, J.M., J. Hazard. Mater. 148, 419 (2007)CrossRef
Ricard, A., St-Onge, L., Malvos, H., Gicquel, A., Hubert, J., Moisan, M., J. Phys. III 5, 1269 (1995)
Alves, L.L., Alvarez, R., Marques, L., Rubio, J., Rodero, A., Quintero, M.C., Eur. Phys. J. Appl. Phys. 46, 21001 (2009)CrossRef
Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., Molecular Theory of Gases and Liquids (John Wiley, New York, 1964)Google Scholar
Alves, L.L., Ferreira, C.M., J. Phys. D: Appl. Phys. 24, 581 (1991)CrossRef
Henriques, J., Tatarova, E., Ferreira, C.M., J. Appl. Phys. 109, 023301 (2011)CrossRef
Kabouzi, Y., Graves, D.B., Castaños-Martínez, E., Moisan, M., Phys. Rev. E 75, 016402 (2007)CrossRef
Torres, J., Carabaño, O., Fernández, M., Rubio, S., Álvarez, R., Rodero, A., Lao, C., Quintero, M.C., Gamero, A., Sola, A., J. Phys.: Conf. Ser. 44, 70 (2006)