Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T22:45:49.428Z Has data issue: false hasContentIssue false

High-frequency characterization and modeling of single metallic nanowires*

Published online by Cambridge University Press:  05 July 2013

Chuan-Lun Hsu
Affiliation:
IMEP-LAHC, Grenoble-INP, UJF, CNRS, US, 3 Parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1, France
Gustavo Ardila
Affiliation:
IMEP-LAHC, Grenoble-INP, UJF, CNRS, US, 3 Parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1, France
Philippe Benech*
Affiliation:
IMEP-LAHC, Grenoble-INP, UJF, CNRS, US, 3 Parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1, France
*
a e-mail: [email protected]
Get access

Abstract

The transmission line characteristics of an individual aluminum metallic nanowire up to 100 GHz are presented in this paper. We have built a reliable framework for characterizing such nanowires using a specially designed coplanar waveguide platform. We systematically estimate the pad parasitics, contact impedance and transmission line parameters based on an equivalent circuit model and cascade-based de-embedding theory. This is the first time that such external parasitic elements have been successfully removed from a nanoscale transmission line. The extracted frequency-dependent electrical responses show good signal levels and a high degree of reproducibility.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble – ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

References

Rice, P., Wallis, T.M., Russek, S.E., Kabos, P., Nano Lett. 7, 1086 (2007)CrossRef
Gomez-Rojas, L., Bhattacharyya, S., Mendoza, E., Cox, D.C., Mauricio Rosolen, J., Silva, S.R.P., Nano Lett. 7, 2672 (2007)CrossRef
Jun, S.C., Huang, X.M.H., Moon, S., Kim, H.J., Hone, J., Jin, Y.W., Kim, J.M., New J. Phys. 9, 265 (2007)CrossRef
Demoustier, S., Minoux, E., Le Baillif, M., Charles, M., Ziaei, A., C.R. Phys. 9, 53 (2008)CrossRef
Kim, K., Wallis, T.M., Rice, P., Chiang, C.-J., Imtiaz, A., Kabos, P., Filipovic, D.S., in IEEE MTT-S Int. Dig., Anaheim, CA, USA, 2010, p. 1292
Kim, K., Wallis, T. M., Rice, P., Chiang, C.-J., Imtiaz, A., Kabos, P., Filipovic, D.S., IEEE Microwe Wireless Compon. Lett. 20, 178 (2010)CrossRef
Durkan, C., Welland, M.E., Phys. Rev. B 61, 215 (2000)CrossRef
Russer, P., Fichtner, N., Lugli, P., Porod, W., Russer, J.A., Yordanov, H., IEEE Microw. Mag. ll, 58 (2010)CrossRef
Madriz, F.R., Jameson, J.R., Krishnan, S., Sun, X., Yang, C.Y., IEEE Trans. Electron Devices 56, 1557 (2009)CrossRef
Hsu, C.-L., Ardila, G., Benech, P., in Proc. IEEE Int. Semi. Conf., Dresden-Grenoble, 2012, pp. 139142
Koolen, M.C.A.M., Geelen, J.A.M., Versleijen, M.P.J.G., in BCTM Symposium, Minneapolis, MN, USA, 1991, pp. 188191
Kolding, T.E., Proc. IEEE Int. Conf. Microelectron Test Structures 12, 105 (1999)
Ito, H., Masu, K., IEEE MTT-S Int. Microwave Symposium, Digest, Atlanta, GA, USA, 2008, pp. 383386Google Scholar
Cho, M.-H., Huang, G.-W., Chiu, C.-S., Chen, K.-M., Peng, A.-S., Teng, Y.-M., IEICE Trans. Electron. E88-C, 845 (2005)CrossRef
Milanovic, V., Ozgur, M., DeGroot, D.C., Jargon, J.A., Gaitan, M., Zaghloul, M.E., IEEE Trans. Microwave Theor. Tech. 46, 632 (1998)CrossRef