Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T22:41:08.893Z Has data issue: false hasContentIssue false

High performance LTPS TFT with very large grains producedby sequential lateral crystallization

Published online by Cambridge University Press:  14 September 2005

S. J. Park*
Affiliation:
Advanced Display Research Center and Department of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130-701, Korea
S. H. Kang
Affiliation:
Advanced Display Research Center and Department of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130-701, Korea
Y. M. Ku
Affiliation:
Advanced Display Research Center and Department of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130-701, Korea
J. Jang
Affiliation:
Advanced Display Research Center and Department of Physics, Kyung Hee University, Dongdaemoon-ku, Seoul 130-701, Korea
Get access

Abstract

We report the structural and electrical properties of polycrystalline silicon on glass crystallized by using a CW Nd:YVO4 laser. Various microstructures appear on amorphous silicon after a scanning of the laser regardless of the crystallization process parameters such as laser power and scan speed. The crystallized region could be characterized by their grain size as 3 distinct regions; RTA-SPC (rapid thermal annealed-solid phase crystallization) region, small-grain region and SLC (sequential lateral crystallization) region with very large grains of ~10 μm. To verify its electrical properties, p-ch TFTs were fabricated on the 3 different regions. The characteristics of TFTs on SLC region were superior to those on other regions and average performances of SLC poly-Si TFTs were $u_{\rm fe} = 132$  cm2/V s, $V_{\rm th} = -4.6$  V, S.S. = 0.5 V/dec, and $I_{\rm off} =\,\sim 1$  pA/μm at $V_{d} = -10$  V, respectively.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, K.H., Park, J.K, Jang, J., IEEE T. Electron Dev. 45, 2548 (1998) CrossRef
Jang, J., Oh, J.Y., Kim, S.K., Choi, Y.J., Yoon, S.Y., Kim, C.O., Nature 395, 481 (1998) CrossRef
Choi, J.H., Kim, D.Y., Choo, B.K., Sohn, W.S., Jang, J., Electrochem. Solid-State Lett. 6, G16 (2003) CrossRef
Kim, J.C., Choi, J.H., Kim, S.S., Kim, K.M., Jang, J., Appl. Phys. Lett. 48, 5068 (2003) CrossRef
A. Hara, F. Takeuuchi, M. Takei, K. Yoshino, K. Suga, N. Sasaki, AM-LCD'01, Tokyo, Japan, 2001, p. 22
F. Takeuuchi, A. Hara, N. Sasaki, Proc. Int'l Display Manufacturing Conf. (IDMC'02), Seoul, Korea, 2002, p. 73
Hara, A., Yoshino, K., Takeuuchi, F., Sasaki, N., Jpn J. Appl. Phys. 42, 23 (2003) CrossRef
Sposil, R.S., Im, J.S., Appl. Phys. Lett. 69, 2864 (1996) CrossRef
Pfeiffer, L., Gelman, A.E., Jackson, K.A., West, K.W., Bastone, J.L., Appl. Phys. Lett. 51, 1256 (1987) CrossRef
S.H. Kang, S.J. Park, Y.M. Ku, J. Jang, Proc. International Display Workshop (IDW '03, Fukuoka, Japan, 2003), p. 729
Thompson, M.O., Mayer, J.W., Phys. Rev. Lett. 50, 896 (1983) CrossRef
Watanabe, H., MiKi, H., Sugai, S., Kawasaki, K., Koka, T., Jpn J. Appl. Phys. 33, 4491 (1994) CrossRef
Ready, S.E., Roh, J.H., Boyce, J.B., Anderson, G.B., Mar. Res. Soc. Symp. Proc. 258, 111 (1992) CrossRef
Im, J.S., Kim, H.J., Thompson, M.O., Appl. Phys. Lett. 63, 1969 (1993) CrossRef
Im, J.S., Kim, H.J., Appl. Phys. Lett. 64, 2303 (1994) CrossRef
Y.H. Jung, J.M. Yoon, M.S. Yang, W.K. Park, H.S. Soh, H.S. Cho, S.B. Limanov, J.S. Im, Mar. Res. Soc. Symp. Proc. 621, Q9.14.1 (2000)