Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T21:12:48.975Z Has data issue: false hasContentIssue false

Gyroscopic magnetic levitation: an original design procedure based on the finite element method

Published online by Cambridge University Press:  21 October 2010

Z. De Grève*
Affiliation:
UMons, Faculté Polytechnique de Mons, Service de Génie Électrique, Bd Dolez 31, 7000 Mons, Belgium F.R.S/FNRS, Fonds de la Recherche Scientifique, Rue d'Egmont 5, 1000 Bruxelles, Belgium
C. Versèle
Affiliation:
UMons, Faculté Polytechnique de Mons, Service de Génie Électrique, Bd Dolez 31, 7000 Mons, Belgium
J. Lobry
Affiliation:
UMons, Faculté Polytechnique de Mons, Service de Génie Électrique, Bd Dolez 31, 7000 Mons, Belgium
Get access

Abstract

In this work, an original procedure, based on the finite element method, is presented for the design of a Levitron©, a device made of permanent magnets and relying on stable gyroscopic magnetic levitation, using secondhand components. A perturbation force analysis is performed on finite element models of available magnets in order to derive the locus of stable equilibrium, as well as the top mass, for a given configuration of the magnets. We investigate three methods for the estimation of forces from finite element computations, two of them based on the Virtual Work principle, and one performing numerical integration of the classical expression of forces between magnets. Results are employed to realize a Levitron© in laboratory, and are shown to be in better agreement with experience than those from a simple analytical model available in the literature.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berry, M.V., Geim, A.K., Eur. J. Phys. 18, 307 (1997) CrossRef
Brandt, E.H., Phys. World 10, 23 (1997) CrossRef
Tsuchimoto, M., IEEE. Trans. Magn. 35, 1270 (1999) CrossRef
Simon, M.D., Heflinger, L.O., Ridgway, S.L., Am. J. Phys. 65, 286 (1997) CrossRef
Jones, T.B., Washizu, M., Gans, R., J. Appl. Phys. 82, 883 (1997) CrossRef
Berry, M.V., Proc. R. Soc. Lond. A 452, 1207 (1996) CrossRef
De Grève, Z., Versèle, C., Lobry, J., J3eA 8, 1012 (2009) CrossRef
Gans, R.F., Jones, T.B., Washizu, M., J. Appl. Phys. 31, 671 (1998)
Gov, S., Shtrikman, S., Thomas, H., Physica 126, 214 (1998)
O. Zienkiewicz, La méthode des éléments finis (McGraw-Hill, Paris, 1979), pp. 55–64
Coulomb, J.L., IEEE Trans. Magn. 19, 2514 (1983) CrossRef
E. Durand, Magnétostatique (Masson et Cie, 1968)
De Medeiros, L.H., Reyne, G., Maunier, G., Yonnet, J.P., IEEE Trans. Magn. 34, 3012 (1998) CrossRef
Benhama, A., Williamson, A.C., Reece, A.B.J., IEE Proc. Electr. Power Appl. 147, 437 (2000) CrossRef
V. Leconte, Électromagnétisme et éléments finis, edited by G. Meunier (Hermès Sciences, Lavoisier, 2002), Vol. 3, pp. 88–104