Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T17:47:51.630Z Has data issue: false hasContentIssue false

Growth, structural, optical and electrical study of Na-substituted potassium hydrogen tartrate crystals

Published online by Cambridge University Press:  05 January 2012

F.A. Mir*
Affiliation:
Solid State Physics Research Laboratory, Department of Physics, National Institute of Technology, Srinagar 190 006, India
*
Get access

Abstract

K1−xNaxHC4H4O6 · H2O (x = 0.3 and 0.7) single crystals have been grown by the gel encapsulation technique. The composition-related structural, optical and electrical properties are investigated. All the crystals have an orthorhombic structure. With the increase of Na content, the transparency of the crystals increases and the band gap values decrease. Good optical transmission of these crystals predicts them to be potential candidates for nonlinear optical applications. From the study on electrical conductivity, a semiconducting behavior is observed for these crystals. Resistivity, activation energy and hoping range are found to decrease with Na doping. DC conductivity behavior observed in these crystals is found to follow a variable-range hopping model. A clear indication of disorder induced in these crystals after Na doping is observed.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Raj, C.J., Manglam, G., Priya, S.M.N., Linet, J.M., Vesta, C., Dinakaran, S., Boaz, B.M., Dass, S.J., Cryst. Res. Technol. 42, 344 (2007)CrossRef
Prasad, P.N., William, D.J., Introduction to Nonlinear Optical Effect in Molecules and Polymers (Wiley, New York, 1991)Google Scholar
Xu, D., Jiang, M., Tan, Z., Acta Chem. Sin. 41, 570 (1983)
Wang, X.Q., Mater. Res. Bull. 34, 2003 (1999)CrossRef
Suryanarayana, K., Dharamprakash, S.M., Sooryanarayana, K., Bull. Mater. Sci. 21, 87 (1988)CrossRef
Pipree, L.V., Kobolova, M.M., Radio Eng. Electron. Phys. (USA) 12, 33 (1984)Google Scholar
Delfino, M., Loiacono, G.M., Osborne, W.N., Kostecky, G.J., Cryst. Growth 46, 241 (1979)CrossRef
Ramajothi, J., Danuskodi, S., Cryst. Res. Technol. 38, 986 (2003)CrossRef
Henisch, H.K., Crystal Growth in Gels (Pennsylvania University Press, University Park, PA, 1973)Google Scholar
Henisch, H.K., Crystal Growth in Gels and Liesgang Rings (Cambridge University Press, Cambridge, 1988)CrossRefGoogle Scholar
Patil, H.M., Sawant, D.K., Bhavsar, D.S., Patil, J.H., Girase, K.D., Arch. Phys. Res. 1, 168 (2010)
Kumar, B.S., Kumar, M.R.S., Rahimkutty, M.H., Babu, K.R., Bull. Mater. Sci. 30, 349 (2007)CrossRef
Mott, N.F., Davis, E.A., Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)Google Scholar
Jiang, M.H., Fang, Q., Adv. Mater. 11, 1147 (1999)3.0.CO;2-H>CrossRef
Badr, Y., Mahmoud, M.A., Cryst. Res. Technol. 41, 658 (2006)CrossRef
Badr, Y., Mahmoud, M.A., J. Mater. Sci. 41, 3947 (2006)CrossRef
Mott, N.F., J. Phil. Mag. 19, 835 (1969)CrossRef
Arora, S.K., Kothari, A., Amin, B., Chudasama, B., Cryst. Res. Technol. 42, 589 (2007)CrossRef
Arora, S.K., Patel, V.A., Tayagi, B., in Proc. of the Int. Workshop on Preparation and Characterization of Technologically Important Single Crystals, New Delhi, 2001, edited by Gupta, S.K. (National Physical Laboratory, New Delhi, 2001), p. 342Google Scholar