Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:42:38.772Z Has data issue: false hasContentIssue false

Growth of shape controlled silicon nanowhiskers by electron beam evaporation

Published online by Cambridge University Press:  14 February 2014

Mehmet Karakiz*
Affiliation:
Department of Physics, Gebze Institute of Technology, 41400 Kocaeli, Turkey Binatam Research and Development Center, Fatih University, 34500 Istanbul, Turkey
Burcu Toydemir
Affiliation:
Department of Physics, Gebze Institute of Technology, 41400 Kocaeli, Turkey
Bayram Unal
Affiliation:
Binatam Research and Development Center, Fatih University, 34500 Istanbul, Turkey
Leyla Colakerol Arslan
Affiliation:
Department of Physics, Gebze Institute of Technology, 41400 Kocaeli, Turkey
*
Get access

Abstract

We investigated the effect of the deposition rate on the surface morphology of Si nanowhiskers (NW) deposited by e-beam evaporation using the vapor-liquid-solid growth mechanism. The roles of deposition rate and corresponding surface diffusion on the Si NW growth kinetics were examined. Two growth regimes were observed within the investigated range of deposition rates. Films belonging to these two regimes were found to have characteristically different formations and surface morphologies. We found that the length-diameter curves of NWs switch from decreasing to increasing at a certain critical evaporation rate. The surface morphology is composed of long whiskers (~1 μm) tapered with faceted sidewalls in the high deposition rate regimes (above 1.2 Å/s) due to their length which is comparable with the adatom diffusion and the direct adsorption of Si atoms on the sidewalls. The characteristic morphology was composed of shorter straight whiskers in the low deposition rate regimes (0.6–1 Å/s) because of the higher contribution of Si adatoms diffusing from the substrate to the NW growth.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cui, Y., Lieber, C.M., Science 291, 851 (2001)CrossRef
Tian, B.Z., et al., Nature 449, 885 (2007)CrossRef
Koo, S.M., et al., Nano Lett. 4, 2197 (2004)CrossRef
Park, I., et al., Nano Lett. 7, 3106 (2007)CrossRef
Agarwal, P., et al., Nano Lett. 7, 896 (2007)CrossRef
Leao, C.R., Fazzio, A., da Silva, A.J.R., Nano Lett. 7, 1172 (2007)CrossRef
Zhu, J., et al., Nano Lett. 9, 279 (2009)CrossRef
Lee, J.H., Galli, G.A., Grossman, J.C., Nano Lett. 8, 3750 (2008)CrossRef
Wagner, R.S., Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964)CrossRef
Dubrovskii, V.G., et al., Phys. Rev. E 73, 021603 (2006)CrossRef
Sivakov, V., et al., J. Cryst. Growth 300, 288 (2007)CrossRef
Schubert, L., et al., Appl. Phys. Lett. 84, 4968 (2004)CrossRef
Hannon, J.B., et al., Nature 440, 69.(2006)CrossRef
Tang, J., et al., Nanotechnol. 22, 235306 (2011)CrossRef
Schmidt, V., Wittemann, J.V., Gosele, U., Chem. Rev. 110, 361.(2010)CrossRef
Morooka, M., Nakabayashi, Y., Matsumoto, S., DDF 194–199, 623.(2001)CrossRef
Stolwijk, N.A., et al., Physica B & C 116, 335.(1983)CrossRef
Oehler, F., et al., Nano Lett. 10, 2335 (2010)CrossRef
den Hertog, M.I., et al., Nano Lett. 8, 1544 (2008)CrossRef
Seo, D.W., et al., J. Appl. Phys. 111, 034301 (2012)CrossRef
Hild, R., et al., Surf. Sci. 512, 117 (2002)CrossRef
Ross, F.M., Tersoff, J., Reuter, M.C., Phys. Rev. Lett. 95, 146104 (2005)CrossRef
Putnam, M.C., et al., Nano Lett. 8, 3109 (2008)CrossRef
Li, F., et al., ACS Nano 4, 632 (2010)CrossRef
Xu, T., et al., Phys. Rev. B 81, 115403 (2010)CrossRef
Li, F., Nellist, P.D., Cockayne, D.J.H., Appl. Phys. Lett. 94, 263111 (2009)CrossRef
Lee, C.Y., et al., J. Nanosci. Nanotechnol. 11, 6946 (2011)CrossRef
Givargizov, E.I., J. Cryst. Growth 31, 20 (1975)CrossRef