Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T02:34:26.499Z Has data issue: false hasContentIssue false

The growth of bunched and multi-circularly wrapped carbon nanotubes on bulk magnetic alloys by microwave enhanced hot-filament CVD with a dilute gas of ammonia

Published online by Cambridge University Press:  21 December 2004

H. Y. Miao
Affiliation:
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
J. T. Lue*
Affiliation:
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
S. K. Chen
Affiliation:
Materials Science Center, National Tsing Hua University, Hsinchu, Taiwan
C. H. Tsau
Affiliation:
Department of Material Science and manufacturing, Chinese Culture University, Taipei, Taiwan
M. S. Ouyang
Affiliation:
Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
Get access

Abstract

Bunched and multi-circularly wrapped carbon nanotubes (CNT) are observed to grow on alloy substrates based on iron group metals and copper by a microwave enhanced hot-filament method with a dilute gas of ammonia at a proper RF self-bias. The grown size of CNTs embodied in the grain sizes of conducting bulk alloy catalysts such as Cu-Ni, Cu-Fe, Cu-Co, and Cu-Ni-Fe-Co are controlled by a precursor time of hydrogen plasma etching. Species with different structural features and homogenization of CNTs samples are produced crucially attributed to various reactant gases and self-bias induced by the radio frequency field.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sacco Jr, A.., P. Thacker, T.N. Chang, T.S. Chiang, J. Catal. 85, 224 (1984) CrossRef
Tibbetts, G.G., J. Catal. Growth 66, 632 (1984) CrossRef
Stewart, I., Tricker, M.J., Cairns, J.A., J. Catal. 94, 360 (1985) CrossRef
Saito, Y., Carbon 33, 979 (1995) CrossRef
Thess, A. et al., Science 273, 483 (1996) CrossRef
Kanzow, H., Ding, A., Phys. Rev. B 60, 11180 (1999) CrossRef
Kataura, H. et al., Carbon 38, 1691 (2000) CrossRef
Gavillet, J. et al., Carbon 40, 1649 (2002) CrossRef
Jourdain, V., Kanzow, H., Castignolles, M., Loiseau, A., Bernier, P., Chem. Phys. Lett. 364, 27 (2002) CrossRef
Gorbunov, A., Jost, O., Pompe, W., Graff, A., Carbon 40, 113 (2002) CrossRef
Tu, Y., Hung, Z.P., Wang, D.Z., Wen, J.G., Ren, Z.F., Appl. Phys. Lett. 80, 4018 (2002) CrossRef
Gorbunov, A., Jost, O., Pompe, W., Graff, A., Appl. Surf. Sci. 197-198, 563 (2002) CrossRef
Choi, Y.C. et al., J. Appl. Phys. 88, 4898 (2000) CrossRef
Ph. Buffat, J.-P. Borel, Phys. Rev. A 13, 2287 (1976) CrossRef
Satto, Y., Carbon 33, 979 (1995) CrossRef
Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., Chem. Phys. Lett. 243, 49 (1995) CrossRef
Yacaman, M.J., Yoshida, M.M., Rendon, L., Santiesteban, J.G., Appl. Phys. Lett. 62, 202 (1993) CrossRef
Ran, Z.F. et al., Science 282, 1105 (1998) CrossRef
Chen, S.Y., Lue, J.T., Phys. Lett. A 309, 114 (2003) CrossRef
Chen, S.Y., Miao, H.Y., Lue, J.T., Ouyag, M.S., J. Phys. D: Appl. Phys. 37, 273 (2004) CrossRef
Vitali, G., Rossi, M., Terranova, M.L., Sessa, V., J. Appl. Phys. 77, 4307 (1995) CrossRef
McCulloch, D.G., Prawer, S., Hoffman, A., Phys. Rev. B 50, 5905 (1994) CrossRef
Barbarossa, V., Galluzzi, F., Tomaciello, R., Zanobi, A., Chem. Phys. Lett. 185, 53 (1991) CrossRef
Li, W., Zhang, H., Wang, C., Zhang, Y., Zhu, X.K., Xie, S., Appl. Phys. Lett. 70, 2684 (1997) CrossRef
Dillon, A.C., Heben, M.J., Appl. Phys. A 72, 133 (2001) CrossRef
Dresselhaus, M.S., Dresselhaus, G., Saito, R., Phys. Rev. B 45, 6234 (1992) CrossRef
Frankland, S.J.V., Brenner, D.W., Chem. Phys. Lett. 334, 18 (2001) CrossRef