Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T21:18:43.371Z Has data issue: false hasContentIssue false

Growth behaviors of ZnO nanostructure on SMAT Cu0.62Zn0.38 during oxidation

Published online by Cambridge University Press:  30 April 2013

Jun Peng Wang
Affiliation:
School of Materials Science & Engineering, Henan University of Science & Technology, Luoyang, Henan, PR. China
Chun Hua Xu*
Affiliation:
School of Materials Science & Engineering, Henan University of Science & Technology, Luoyang, Henan, PR. China
Zhen Biao Zhu
Affiliation:
School of Materials Science & Engineering, Henan University of Science & Technology, Luoyang, Henan, PR. China
Chun Sheng Wen
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, P.R. China
Jian Lu
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, P.R. China
San Qiang Shi
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, P.R. China
*
Get access

Abstract

Cu0.62Zn0.38 foil was subjected to surface mechanical attrition treatment (SMAT) processing first. Growth behavior of ZnO nanostructure on the SMAT Cu0.62Zn0.38 surface during thermal oxidation was investigated in this paper. The original and SMAT Cu0.62Zn0.38 foils were thermally oxidized at 400 ~ 700 °C under various gaseous environments, including nitrogen and mixture of N2-O2 at a pressure of 1 atm. for 3 h. The oxidized specimens were characterized with a scanning electron microscope, an X-ray diffractometer and a transmission electron microscope. It is found that nanosheets are easily formed on the SMAT specimen surface. The favorable formation of nanosheets relates to twin lamellae structure of Cu0.62Zn0.38 formed during SMAT processing.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kind, H., Yan, H.Q., Messer, B., Law, M., Yang, P.D., Adv. Mat. 14, 158 (2002)3.0.CO;2-W>CrossRef
Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., Yang, P.D., Science 292, 1897 (2001)CrossRef
Li, Y.B., Bando, Y., Sato, T., Kurashima, K., Appl. Phys. Lett. 81, 144 (2002)CrossRef
Yang, P.D., Yan, H.Q., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R.R., Choi, H.J., Adv. Funct. Mater. 12, 323 (2002)3.0.CO;2-G>CrossRef
Zheng, M.J., Zhang, L.D., Li, G.H., Shen, W.Z., Chem. Phys. Lett. 363, 123 (2002)CrossRef
Park, W.I., Kim, D.H., Jung, S.W., Yi, G.C., Appl. Phys. Lett. 80, 4232 (2002)CrossRef
Greene, L.E., Law, M., Goldberger, J., Kim, F., Johnson, J.C., Zhang, Y.F., Saykally, R.J., Yang, P.D., Ang. Chem. Int. Ed. 42, 3031 (2003)CrossRef
Ren, S., Bai, Y.F., Chen, J., Deng, S.Z., Xu, N.S., Wu, Q.B., Yang, S.H., Mat. Lett. 61, 666 (2007)CrossRef
Wen, X.G., Fang, Y.P., Pang, Q., Yang, C.L., Wang, J.N., Ge, W.K., Wong, K.S., Yang, S.H., J. Phys. Chem. B 109, 15303 (2005)CrossRef
Huo, K.F., Hu, Y.M., Fu, J.J., Wang, X.B., Chu, P.K., Hu, Z., Chen, Y., J. Phys. Chem. C 111, 5876 (2007)CrossRef
Wang, K., Tao, N.R., Liu, G., Lu, J., Lu, K., Acta Mater. 54, 5281 (2006)CrossRef
Xu, C.H., Zhu, Z.B., Li, G.L., Xu, W.R., Huang, H.X., Mater. Chem. Phys. 124, 252 (2010)CrossRef
Xu, C.H., Zhu, Z.B., Lui, H.F., Surya, C., Shi, S.Q., Superlattice Microstruct. 49, 408 (2011)CrossRef
Cullity, B.D., Stock, S.R., Elements of X-ray Diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001)Google Scholar
Sakharova, N.A., Fernandes, J.V., Vieira, M.F., Mater. Sci. Eng. A: Struct. Mater. 507, 13 (2009)CrossRef
Pilling, N.B., Bedworth, R.E., J. Inst. Metals 29, 529 (1923)
Xu, C.H., Gao, W., Mat. Res. Innovat. 3, 231 (2000)CrossRef
Birks, B., Introduction to High Temperature Oxidation of Metals, 2nd edn. (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
Guo, K.X., Classification and Micrograph of Copper and Alloys (China Scientific Publishing Company, Xian, 2005)Google Scholar
Bradford, S.A., Corrosion Control, 2nd edn. (ASM International, CASTI Publishing Inc., Alberta, Canada, 2004)Google Scholar
Nechaev, Y.S., DDF 194–199, 1713 (2001)CrossRef
Raynaud, G.M., Rapp, R.A., Oxid. Met. 21, 89 (1984)CrossRef
Xiao, G.H., Tao, N.R., Lu, K., Mater. Sci. Eng. A: Struct. Mater. 513–514, 13 (2009)CrossRef
Murr, L.E., Esquivel, E.V., J. Mater. Sci. 39, 1153 (2004)CrossRef