Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T16:23:12.740Z Has data issue: false hasContentIssue false

Growth and properties of Dy-doped GaN nanowires

Published online by Cambridge University Press:  26 February 2010

Y. P. Cao
Affiliation:
Institute of Semiconductors, College of Physics and Electronics, Shandong Normal University, Jinan, 250014, P.R. China
F. Shi
Affiliation:
Institute of Semiconductors, College of Physics and Electronics, Shandong Normal University, Jinan, 250014, P.R. China
H. B. Sun
Affiliation:
Institute of Semiconductors, College of Physics and Electronics, Shandong Normal University, Jinan, 250014, P.R. China
W. J. Liu
Affiliation:
Institute of Semiconductors, College of Physics and Electronics, Shandong Normal University, Jinan, 250014, P.R. China
Y. F. Guo
Affiliation:
Institute of Semiconductors, College of Physics and Electronics, Shandong Normal University, Jinan, 250014, P.R. China
C. S. Xue*
Affiliation:
Institute of Semiconductors, College of Physics and Electronics, Shandong Normal University, Jinan, 250014, P.R. China
Get access

Abstract

GaN nanowires doped with Dy have been fabricated on Si (111) substrate through ammoniating Ga2O3 films doped with rare earth phosphor. The samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM) and photoluminescence (PL). The results demonstrate that the Dy-doped GaN nanowires were single crystalline with hexagonal wurtzite structure. The diameters of the nanowires were about 50 nm and the lengths were up to several tens micrometers. Also, the optical properties of the nanowires were greatly dependent on the doping of Dy. The growth mechanism of crystalline GaN nanowires is discussed briefly.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Uthirakumar, P., Han, N., Woo, A.H., Suh, E.K., Hong, C.H., Curr. Appl. Phys. 9, 114 (2009) CrossRef
Chen, C.C., Yeh, C.C., Adv. Mater. 12, 738 (2000) 3.0.CO;2-J>CrossRef
Wang, Q., Sun, Q., Jena, P., Phys. Rev. Lett. 95, 167202 (2005) CrossRef
Cimpoiasu, E., Stern, E., Klie, R., Munden, R.A., Cheng, G., Reed, M.A., Nanotechnology 17, 5735 (2006) CrossRef
Radovanovic, P.V., Stamplecoskie, K.G., Pautler, B.G., J. Am. Chem. Soc. 129, 10980 (2007) CrossRef
Wang, P.W., Zhang, X.J., Wang, B.Q., Zhang, X.Z., Yu, D.P., Chin. Phys. Lett. 25, 3040 (2008) CrossRef
S.M. Zhou, Phys. Lett. A 357, 374 (2006)
Sawahata, J., Bang, H., Seo, J., Takiguchi, M., Akimoto, K., J. Ceram. Process. Res. 6, 184 (2005)
Lozykowski, H.J., Jadwisienczak, W.M., Brown, I., Appl. Phys. Lett. 74, 1129 (1999) CrossRef
Steckl, A.J., Garter, M., Lee, D.S., Heikenfeld, J., Birkhahn, R., Appl. Phys. Lett. 75, 2184 (1999) CrossRef
Chen, J.H., Xue, C.S., Zhuang, H.Z., Yang, Z.Z., Qin, L.X., Li, H., Huang, Y.L., J. Alloys Compd. 468, L1 (2009) CrossRef
Qin, L.X., Xue, C.S., Duan, Y.F., Shi, L.W., Physica B 404, 190 (2009) CrossRef
Amanullah, F.M., Pratap, K.J., Hari, V.B., Mater. Sci. Eng. B 52, 93 (1998) CrossRef
Dai, L., Liu, S.F., You, L.P., Zhang, J.C., Qin, G.G., J. Phys.: Condens. Matter 17, L445 (2005)
Wang, T., Pan, X.J., Zhang, Z.X., Li, H., Xie, E.Q., J. Chin. Rare Earth Soc. 26, 242 (2008)
Xu, B.S., Zhai, L.Y., Liang, J., Ma, S.F., Jia, H.S., Liu, X.G., J. Cryst. Growth 291, 34 (2006) CrossRef
Chen, J.H., Xue, C.S., Zhuang, H.Z., Qin, L.X., Li, H., Yang, Z.Z., Appl. Surf. Sci. 254, 4716 (2008) CrossRef