Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T06:25:24.559Z Has data issue: false hasContentIssue false

Global scattering functions: a tool for grazing incidence small angle X-ray scattering (GISAXS) data analysis of low correlated lateral structures

Published online by Cambridge University Press:  17 June 2010

S. Lenz
Affiliation:
Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
M. Bonini
Affiliation:
Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
S. K. Nett
Affiliation:
Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany Institute for Physical Chemistry, Johannes Gutenberg University, Jakob-Welder-Weg 10, 55099 Mainz, Germany
M. C. Lechmann
Affiliation:
Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
S. G.J. Emmerling
Affiliation:
Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
R. S. Kappes
Affiliation:
Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
M. Memesa
Affiliation:
Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
A. Timmann
Affiliation:
HASYLAB at DESY, Notkestr. 85, 22603 Hamburg, Germany
S. V. Roth
Affiliation:
HASYLAB at DESY, Notkestr. 85, 22603 Hamburg, Germany
J. S. Gutmann*
Affiliation:
Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany Institute for Physical Chemistry, Johannes Gutenberg University, Jakob-Welder-Weg 10, 55099 Mainz, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article we discuss the applicability of global scattering functions for structure analysis of Grazing Incidence Small Angle X-ray Scattering (GISAXS) data. Contrary to rigorous analysis of the full 2-D detector image, which can be performed with complex simulation models, the global scattering functions described here will be used to model transverse detector scans in the $q_{\parallel}$ reciprocal scattering planes. In contrast to a full GISAXS analysis, this procedure cannot explain structural features perpendicular to the sample plane. The discussed method is useful for the analysis of weakly correlated films. These films are e.g. found in polymer inorganic composite materials based on commercially available nanoparticles. In hybrid material systems polydisperse structures, including particle aggregates without precisely defined shape are formed. The pictured approach, which models scattering in terms of structural levels, has been previously applied with success in conventional transmission SAXS geometry. It is based on conventional exponential and power laws. Hence, data analysis becomes less complex compared to simulation approaches. Here we examine if this unified fitting model can be used to model diffuse, non specular scattering resulting from GISAXS. In this context the applicability and limit of its application to diffuse scattering in the GISAXS geometry is discussed. Furthermore diffuse $q_{\parallel}$ scattering from different ideal particle types is simulated and compared with fitted results. To verify our approach, fit results from experimental GISAXS curves obtained for real samples are compared with results from Scanning Probe Microscopy and Scanning Electron Microscopy studies. The samples investigated range from evaporated Au films to hybrid TiO2/polymer films and demonstrate the usefulness in the structural analysis of complex films.

Type
Research Article
Copyright
© EDP Sciences, 2010

References

Müller-Buschbaum, P., Bauer, E., Maurer, E., Roth, S.V., Gehrke, R., Burghammer, M., Riekel, C., J. Appl. Crystallogr. 40, S341 (2007) CrossRef
Müller-Buschbaum, P., Casagrande, M., Gutmann, J., Kuhlmann, T., Stamm, M., von Krosigk, G., Lode, U., Cunis, S., Gehrke, R., Europhys. Lett. 42, 517 (1998) CrossRef
Lazzari, R., Renaud, G., Revenant, C., Jupille, J., Borensztein, Y., Phys. Rev. B 79, 8 (2009) CrossRef
Yoneda, Y., Phys. Rev. 131, 2010 (1963) CrossRef
Vineyard, G.H., Phys. Rev. B 26, 4146 (1982) CrossRef
Salditt, T., Metzger, T.H., Peisl, J., Reinker, B., Moske, M., Samwer, K., Europhys. Lett. 32, 331 (1995) CrossRef
Salditt, T., Metzger, T.H., Brandt, C., Klemradt, U., Peisl, J., Phys. Rev. B 51, 5617 (1995) CrossRef
Sinha, S.K., Sirota, E.B., Garoff, S., Stanley, H.B., Phys. Rev. B 38, 2297 (1988) CrossRef
Holy, V., Kubena, J., Ohlidal, I., Lischka, K., Plotz, W., Phys. Rev. B 47, 15896 (1993) CrossRef
Holy, V., Baumbach, T., Phys. Rev. B 49, 10668 (1994) CrossRef
Rauscher, M., Salditt, T., Spohn, H., Phys. Rev. B 52, 16855 (1995) CrossRef
Rauscher, M., Paniago, R., Metzger, H., Kovats, Z., Domke, J., Peisl, J., Pfannes, H.D., Schulze, J., Eisele, I., J. Appl. Phys. 86, 6763 (1999) CrossRef
Lazzari, R., J. Appl. Crystallogr. 35, 406 (2002) CrossRef
Pedersen, J.S., Vysckocil, P., Schonfeld, B., Kostorz, G., J. Appl. Crystallogr. 30, 975 (1997) CrossRef
A. Guinier, G. Fournet, Small-Angle Scattering of X-rays (Wiley, New York, 1955)
Beaucage, G., J. Appl. Crystallogr. 28, 717 (1995) CrossRef
Beaucage, G., J. Appl. Crystallogr. 29, 134 (1996) CrossRef
G. Porod, Small-Angle X-ray Scattering (Academic Press, London, 1982)
Memesa, M., Weber, S., Lenz, S., Perlich, J., Berger, R., Muller-Buschbaum, P., Gutmann, J.S., Energy Environ. Sci. 2, 783 (2009) CrossRef
Gehrke, R., Rev. Sci. Instrum. 63, 455 (1992) CrossRef
Roth, S.V., Burghammer, M., Riekel, C., Muller-Buschbaum, P., Diethert, A., Panagiotou, P., Walter, H., Appl. Phys. Lett. 82, 1935 (2003) CrossRef
Roth, S.V., Dohrmann, R., Dommach, M., Kuhlmann, M., Kroger, I., Gehrke, R., Walter, H., Schroer, C., Lengeler, B., Muller-Buschbaum, P., Rev. Sci. Instrum. 77, 085106 (2006) CrossRef
Dietrich, S., Haase, A., Phys. Rep. 260, 1 (1995) CrossRef
J.S. Gutmann, thesis, Johannes Gutenberg-Universität, 2000
Frömsdorf, A., Capek, R., Roth, S.V., J. Phys. Chem. B 110, 15166 (2006) CrossRef
B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982)
Schlomka, J.P., Tolan, M., Schwalowsky, L., Seeck, O.H., Stettner, J., Press, W., Phys. Rev. B 51, 2311 (1995) CrossRef
Chiarello, R., Panella, V., Krim, J., Thompson, C., Phys. Rev. Lett. 67, 3408 (1991) CrossRef
Beaucage, G., Rane, S., Sukumaran, S., Satkowski, M.M., Schechtman, L.A., Doi, Y., Macromolecules 30, 4158 (1997) CrossRef
Chavan, S.V., Sastry, P.U., Tyagi, A.K., Scripta Mater. 55, 569 (2006) CrossRef
Tappan, B.C., Huynh, M.H., Hiskey, M.A., Chavez, D.E., Luther, E.P., Mang, J.T., Son, S.F., J. Am. Chem. Soc. 128, 6589 (2006) CrossRef
di Stasio, S., Mitchell, J.B.A., LeGarrec, J.L., Biennier, L., Wulff, M., Carbon 44, 1267 (2006) CrossRef
Norman, A.I., Ho, D.L., Karim, A., Amis, E.J., J. Colloid Interface Sci. 288, 155 (2005) CrossRef
Rathgeber, S., Pakula, T., Urban, V., J. Chem. Phys. 121, 3840 (2004) CrossRef
J.S. Higgins, H. Benoit, Polymers and Neutron Scattering (Oxford, 1994)
Beaucage, G., Kammler, H.K., Pratsinis, S.E., J. Appl. Crystallogr. 37, 523 (2004) CrossRef
Ilavsky, J., Jemian, P.R., J. Appl. Crystallogr. 42, 347 (2009) CrossRef
Dosch, H., Batterman, B.W., Wack, D.C., Phys. Rev. Lett. 56, 1144 (1986) CrossRef
Dosch, H., Phys. Rev. B 35, 2137 (1987) CrossRef