Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T17:00:22.747Z Has data issue: false hasContentIssue false

Fluid-wall interactions in a deformable system

Published online by Cambridge University Press:  16 September 2003

S. Kornelik
Affiliation:
Laboratoire de Mécanique Physique, B2OA UMR 7052 CNRS, Université Paris XII, Val-de-Marne, Faculté des Sciences et Technologie, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France Chair of the Mathematical Analysis, Tomsk's State University, Faculty of Applied Mechanics and Mathematics, ul. Prospekt Lenina 36, Tomsk, 634040, Russia
S. Naili*
Affiliation:
Laboratoire de Mécanique Physique, B2OA UMR 7052 CNRS, Université Paris XII, Val-de-Marne, Faculté des Sciences et Technologie, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
C. Oddou
Affiliation:
Laboratoire de Mécanique Physique, B2OA UMR 7052 CNRS, Université Paris XII, Val-de-Marne, Faculté des Sciences et Technologie, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
A. Boubentchikov
Affiliation:
Chair of the Mathematical Analysis, Tomsk's State University, Faculty of Applied Mechanics and Mathematics, ul. Prospekt Lenina 36, Tomsk, 634040, Russia
Get access

Abstract

The purpose of this work is the modeling and the analysis of fluid-wallinteractions in a deformable cylindrical cavity which has one single orifice for inflow andoutflow. The model is used to study the dynamical behavior of anon linear oscillatory coupled system. Indeed, the deformation of the cavity can be large, therefore the fluid contained inside the cavity changes greatly. Our analysisdescribes the behavior of the system according to its characteristic parameters. Adimensional analysis of the set of coupled equations describing the dynamical behavior ofboth the incompressible fluid and the cavity wall is performed. We show that such a behaviorcan be characterized by five dimensionless parameters. The equations are then solved by using the so-called time-staggered scheme which allows to integrate separately the equations describing the structure and the fluid dynamics during each time step. The fluid part is discretized by the finite difference method associated with an Arbitrary Lagrangian Eulerian formulation of the governing fluid dynamics equations and the structure part including the motion of the piston by a Runge-Kutta method. For an harmonic excitation, we show that after a transient phase, the response of the system is both anharmonic and periodic, with a fundamental period equal to that of the excitation. Moreover, we study the respective influence of the wall rigidity, the fluid viscosity and the inertia effects, for different magnitudes of the excitation. Using an approximation of the damping force associated with the viscous effects of the dynamical flow, we complete this study by showing how the system of equations can be decoupled.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boederick, L.L., Leonard, J.W., Ocean Eng. 22, 731 (1995) CrossRef
Guruswamy, G.P., Comput. Struct. 30, 1 (1998) CrossRef
Heil, M., Int. J. Num. Methods Fluids 28, 243 (1998) 3.0.CO;2-U>CrossRef
Brun, P., Tribouilloy, C., Duval, A.-M., Iserin, L., Meguira, A., Pelle, G., Dubois-Rande, J.-L., J. Am. Coll. Cardiol. 20, 420 (1992) CrossRef
Vierendeels, J.A., Riemslagh, K., Dick, E., Verdonck, P.R., ASME J. Biomech. Eng. 122, 667 (2000) CrossRef
Delemarre, B.J., Bot, H., Pearlman, A.S., Visser, C.A., Dunning, A.J., J. Clin. Ultrasound 15, 115 (1987) CrossRef
Peskin, C.S., McQueen, D.M., J. Comput. Phys. 81, 372 (1989) CrossRef
Owen, A., Cardiovasc. Res. 27, 255 (1993) CrossRef
T.W. Taylor, T. Yamagushi, Biorheology, 32, 61 (1995)
Redaelli, A., Montevecchi, F.M., ASME J. Biomech. Eng. 118, 529 (1996) CrossRef
Redaelli, A., Malsano, F., Schreuder, J.-J., Montevecchi, F.M., J. Appl. Physiol. 89, 314 (2000)
Henry, F.S., Shortland, A.P., Ludicello, F., Black, R.A., Jarvis, J.C., Collins, M.W., Salmons, S., ASME J. Biomech. Eng. 119, 13 (1997) CrossRef
B. Chahboune, J.-M. Crolet, C.R. Acad. Sci. Paris, (Sér. IIb) 325, 143 (1997)
Hirt, C.W., Amsden, A.A., Cook, H.K., J. Comput. Phys. 14, 227 (1974) CrossRef
Hughes, T.J.R., Liu, W.K., Zimmermann, T.K., Comput. Methods Appl. Mech. Eng. 33, 329 (1981) CrossRef
Liu, W.K., Chang, H., Chen, J.-S., Belytschko, T., Comput. Methods Appl. Mech. Eng. 68, 259 (1988)
Huerta, A., Liu, W.K., J. Pressure Vessel Technol. 110, 15 (1988) CrossRef
Normura, T., Hughes, T.J.R., Comput. Methods Appl. Mech. Eng. 95, 115 (1992)
P. Dantan, Étude numérique et expérimentale de l'écoulement instationnaire d'un fluide visqueux incompressible dans une cavité de dimension variable. Modélisation de l'hémodynamique cardiaque, Ph.D. Thesis, Université Paris 7, 1985
Piperno, S., Larrouturou, B., Lesoinne, M., Int. J. Comput. Fluid Dynam. 6, 157 (1996) CrossRef
E. Guyon, J.P. Hulin, L. Petit, Hydrodynamique physique (InterEditions, 1982)
P.J. Roache, Computational fluid dynamics (Albuquerque: Hermosa publishers, 1982)
Jensen, V.G., Proc. Roy. Soc. London, Series A 249, 346 (1959) CrossRef
W.E. Boyce, R.C. Diprima, Elementary differential equations and boundary value problems (New York: John Wiley & Sons, 1986)
Shankar, V., Ide, I., Comput. Struct. 30, 15 (1988) CrossRef
Giuliani, S., Nucl. Eng. Design 72, 205 (1982) CrossRef
Abe, H., Nakamura, T., Kimura, T., Motomiya, M., Konno, K., Arai, S., Suzuki, N., J. Biomech. 14, 357 (1981) CrossRef