Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T05:35:52.494Z Has data issue: false hasContentIssue false

Finite-element solution of monopolar corona in a coaxial system

Published online by Cambridge University Press:  24 July 2002

H. Yala
Affiliation:
Laboratoire de Génie Électrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Y. Zebboudj*
Affiliation:
Laboratoire de Génie Électrique, Université A. Mira de Béjaïa, 06000 Béjaïa, Algeria
Get access

Abstract

An iterative finite element technique is proposed as a numerical tool to solve Poisson's equation in coaxial system during the positive DC corona discharge. The physical - mathematical model developed by Hartmann which separates the interelectrode space in two distinct regions is adopted. The magnitude of the electric field at the ionisation-region/drift-region interface in air is now well known. It is equal to the value of the minimum ionisation field which is taken as a boundary condition or a convergence criterion of space charge at this border. The effectiveness of the proposed method has been tested through its application to the coaxial system where the electric field has been measured with the linear biased probe. The obtained results are in agreement with those obtained experimentally. The classical Kaptzov's assumption, largely used in the literature, is also discussed in this work in terms of the corona wire radius. The calculated electric field at the corona wire surface, with and without resorting to the Kaptzov's assumption, shows that, for large wire radius the assumption is valid. However, for very thin wires the disagreement with the measurements values is important.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.S. Townsend, Die ionisation der gase, in Bd. I des Handbuchs der radiologie von MARX (Leipzig, 1920)
F.W. Peek, Dielectric phenomena in H.V. engineering (Mc Graw Hill, 1929), pp. 52-80
J.J. Thomson, G.P. Thomson, Conduction of electricity through gases (London CUP, 1933), Vol. 2
Deutsch, W., Ann. Phys. 5, 588 (1933) CrossRef
N.A. Kaptzov, Elektricheskie Invlentiia v Gazakh i Vakuumme (OGIZ Moscow, URSS, 1947), pp. 587-630
G. Hartmann, IEEE Trans. Ind. Appl. IA-20, 1647 (1984)
Horenstein, M.N., IEEE Trans. Ind. Appl. 20, 1607 (1984) CrossRef
Davis, J.L., Hoburg, J.F., J. Electrostat. 18, 1 (1986) CrossRef
Budd, C., Eur. J. Appl. Math. 2, 43 (1991) CrossRef
Abdel-Salam, M., Al-Hamouz, Z., IEEE Trans. Ind. Appl. 31, 484 (1995) CrossRef
Al-Hamouz, Z., Abdel-Salam, M., IEEE Trans. Ind. Appl. 35, 380 (1999) CrossRef
Adamiak, K., IEEE Trans. Ind. Appl. 30, 387 (1994) CrossRef
Y. Zebboudj, Influence de l'humidité de l'air atmosphérique sur les paramètres de la décharge couronne positive en géométrie cylindrique, thèse de Doctorat, Octobre 1988, Université Paris 6 (France)
Zebboudj, Y., IEE Proc. SMT 147, 74 (2000)
Zebboudj, Y., Hartmann, G., Eur. Phys. J. AP 7, 167 (1999) CrossRef
Jones, J.E., Dupuy, J., Schreiber, G.O.S., Waters, R.T., J. Phys. D 21, 322 (1988) CrossRef
Medlin, A.J., Fletcher, C.A.J., Morrow, R., J. Electrostat. 43, 39 (1998) CrossRef
Medlin, A.J., Fletcher, C.A.J., Morrow, R., J. Electrostat. 43, 61 (1998) CrossRef