Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:44:57.407Z Has data issue: false hasContentIssue false

Fine grid numerical solutions of triangular cavity flow

Published online by Cambridge University Press:  21 March 2007

E. Erturk*
Affiliation:
Gebze Institute of Technology, Energy Systems Engineering Department, Gebze, Kocaeli 41400, Turkey
O. Gokcol
Affiliation:
Bahcesehir University, Computer Engineering Department, Besiktas, Istanbul 34349, Turkey
Get access

Abstract

Numerical solutions of 2-D steady incompressible flowinside a triangular cavity are presented. For the purpose ofcomparing our results with several different triangular cavitystudies with different triangle geometries, a general trianglemapped onto a computational domain is considered. The Navier-Stokesequations in general curvilinear coordinates in streamfunction andvorticity formulation are numerically solved. Using a very fine gridmesh, the triangular cavity flow is solved for high Reynoldsnumbers. The results are compared with the numerical solutions foundin the literature and also with analytical solutions as well.Detailed results are presented.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barragy, E., Carey, G.F., Comput. Fluids 26, 453 (1997) CrossRef
Batchelor, G.K., J. Fluid Mech. 1, 177 (1956) CrossRef
Benjamin, A.S., Denny, V.E., J. Comput. Phys. 33, 340 (1979) CrossRef
Botella, O., Peyret, R., Comput. Fluids 27, 421 (1998)
Burggraf, O.R., J. Fluid Mech. 24, 113 (1966) CrossRef
Erturk, E., Corke, T.C., Gokcol, C., Int. J. Numer. Methods Fluids 48, 747 (2005) CrossRef
Erturk, E., Gokcol, C., Int. J. Numer. Methods Fluids 50, 421 (2006) CrossRef
Gaskell, P.H., Thompson, H.M., Savage, M.D., Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 213, 263 (1999) CrossRef
Ghia, U., Ghia, K.N., Shin, C.T., J. Comput. Phys. 48, 387 (1982) CrossRef
Huang, H., Wetton, B.R., J. Comput. Phys. 126, 468 (1996) CrossRef
Jyotsna, R., Vanka, S.P., J. Comput. Phys. 122, 107 (1995) CrossRef
Li, M., Tang, T., Fornberg, B., Int. J. Numer. Methods Fluids 20, 1137 (1995) CrossRef
Li, M., Tang, T., Comput. Math. Appl. 31, 55 (1996) CrossRef
McQuain, W.D., Ribbens, C.J., Wang, C-Y, Watson, L.T., Comput. Fluids 23, 613 (1994) CrossRef
Moffatt, H.K., J. Fluid Mech. 18, 1 (1963) CrossRef
Napolitano, M., Pascazio, G., Quartapelle, L., Comput. Fluids 28, 139 (1999) CrossRef
Ribbens, C.J., Watson, L.T., Wang, C.-Y., J. Comput. Phys. 112, 173 (1994) CrossRef
Rubin, S.G., Khosla, P.K., Comput. Fluids 9, 163 (1981) CrossRef
Spotz, W.F., Int. J. Numer. Methods Fluids 28, 737 (1998) 3.0.CO;2-L>CrossRef
J.C. Tennehill, D.A. Anderson, R.H. Pletcher, Computational Fluid Mechanics and Heat Transfer, 2nd edn. (Taylor & Francis, London, 1997)
Thom, A., Proc. Roy. Soc. London Series A 141, 651 (1933) CrossRef
Weinan, E., Jian-Guo, L., J. Comput. Phys. 124, 368 (1996)