Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T20:57:00.220Z Has data issue: false hasContentIssue false

Fe nanochain and nanowires encapsulation in isolated finite thickness ZnO nanotube and its bundle systems

Published online by Cambridge University Press:  08 August 2014

Rostam Moradian*
Affiliation:
Physics Department, Faculty of Science, Razi University, Kermanshah, Iran Nano Science and Technology Research Center, Razi University, Kermanshah, Iran
Masoud Shahrokhi
Affiliation:
Physics Department, Faculty of Science, Razi University, Kermanshah, Iran Nano Science and Technology Research Center, Razi University, Kermanshah, Iran
Saied Amjaian
Affiliation:
Physics Department, Faculty of Science, Razi University, Kermanshah, Iran Nano Science and Technology Research Center, Razi University, Kermanshah, Iran
Jamileh Samadi
Affiliation:
Physics Department, Faculty of Science, Razi University, Kermanshah, Iran Nano Science and Technology Research Center, Razi University, Kermanshah, Iran
Reza Ijadi
Affiliation:
Tech-Market Services Corridor, Dr. Fatemi St., Tehran, Iran
*
Get access

Abstract

Synthesized ZnO nanotubes have finite wall thickness and holy hexagon section. Using density functional theory first we calculated structural and electronic properties of isolated and bundle of these systems. Then same calculations are performed for these systems which encapsulated Fe nanochain or Fe nanowires with different thickness. We found for both cases the bundle is more stable than isolated nanotube. Both pristine of isolated and bundle are semiconductor, in which the bundle energy gap is less than isolated nanotube. All encapsulated systems are spin polarized ferromagnetic with high magnetic moment. In each encapsulated nanotube for lower thickness all ZnO layers are metal but for high thickness the outer layers remained semiconductor.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Monteiro, T., Neves, A.J., Soares, M.J., Carmo, M.C., Peres, M., Appl. Phys. Lett. 87, 192108 (2005)CrossRef
Maiti, U.N., Ghosh, P.K., Ahmed, Sk.F., Mitra, M.K., Chattopadhyay, K.K., J. Sol-Gel Sci. Technol. 41, 87 (2007)CrossRef
Moradian, R., Shahrokhi, M., Physica E 44, 1760 (2012)CrossRef
Huang, M.H., Mao, M., Fiec, H., Yang, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., Yang, P.D., Science 292, 1897 (2001)CrossRef
Arnold, M.S., Avouris, P., Pan, Z.W., Wang, Z.L., J. Phys. Chem. B 107, 659 (2003)CrossRef
Yi, G.-C., Wang, C., Park, W.I., Semicond. Sci. Technol. 20, 22 (2005)CrossRef
Wang, Z.L., Mater. Today 7, 26 (2004)CrossRef
Zhang, X., Zhang, Y., Xu, J., Wang, Z., Chen, X., Yu, D., Appl. Phys. Lett. 87, 123111 (2005)CrossRef
He, A.L., Wang, X.Q., Fan, Y.Q., Feng, Y.P., J. Appl. Phys. 108, 084308 (2010)CrossRef
Xu, H., Zhan, F., Rosa, A.L., Frauenheim, Th., Zhang, R.Q., Solid State Commun. 148, 534 (2008)CrossRef
Li, Y., Zhou, Z., Chen, Y., Chen, Z., J. Chem. Phys. 130, 204706 (2009)CrossRef
Spencer, M.J.S., Prog. Mater. Sci. 57, 437 (2012)CrossRef
Delin, A., Tosatti, E., Phys. Rev. B 68, 144434 (2003)CrossRef
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnr, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M., Science 294, 1488 (2001)CrossRef
Hamada, N., Sawada, S., Oshiyama, A., Phys. Rev. Lett. 68, 1579 (1992)CrossRef
Golberg, D., Xu, F.F., Bando, Y., Appl. Phys. A 76, 479 (2003)CrossRef
Tang, C., Bando, Y., Golberg, D., Ding, X., Qi, S., J. Phys. Chem. B 107, 6539 (2003)CrossRef
Han, W.Q., Chang, C.W., Zettl, A., Nano Lett. 4, 1355 (2004)CrossRef
Fagan, S.B., Mota, R., Silva, A.J.R.D., Fazzio, A., Microelectron. J. 34, 481 (2003)CrossRef
Moradian, R., Shahrokhi, M., Moradian, S., Physica E 47, 40 (2013)CrossRef
Shahrokhi, M., Moradian, R., Eur. Phys. J. Appl. Phys. 65, 20402 (2014)CrossRef
Naderi, S., Shahrokhi, M., Noruzi, H.R., Moradian, R., Eur. Phys. J. Appl. Phys. 62, 30402 (2013)CrossRef
Xie, Y., Zhang, J.M., Physica E 44, 405 (2011)CrossRef
Blaha, P., Singh, D., Sorantin, P.I., Schwarz, K., Phys. Rev. B 46, 1321 (1992)CrossRef
Blaha, P., Schwarz, K., WIEN2k (Vienna University of Technology Austria, 2002), http://www.wien2k.at/ Google Scholar
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)CrossRef
Peterson, M., Wanger, F., Hufnagel, L., Scheer, M., Blaha, P., Schwarz, K., Comput. Phys. Commun. 126, 294 (2000)CrossRef
Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 5188 (1976)CrossRef
Wang, S.F., Chen, L.Y., Zhang, Y., Zhang, J.M., Xu, K.W., Comput. Theor. Chem. 962, 108 (2010)
Fathalian, A., Jalilian, J., Shahidi, S., Solid State Commun. 151, 1635 (2011)CrossRef
Weissmann, M. et al., Phys. Rev. B 73, 125435 (2006)CrossRef