Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T21:14:40.652Z Has data issue: false hasContentIssue false

Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting

Published online by Cambridge University Press:  20 August 2014

Shengxi Zhou
Affiliation:
State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
Junyi Cao*
Affiliation:
State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
Jing Lin
Affiliation:
State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
Zezhou Wang
Affiliation:
State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
*
a e-mail: [email protected]
Get access

Abstract

Numerical and experimental investigations of a broadband vibration energy harvester with triple-well are presented. The nonlinear restoring force of the tristable oscillator is experimentally identified as a high order polynomial that depends on the relative spacing and locations of the magnets in the magnetically coupled piezoelectric cantilever. Simulations and experiments are performed at different harmonic excitation levels ranging from 10 to 35 Hz. The tristable energy harvester possesses the unique jump characteristics of oscillation center stemming from excitation level and initial displacements. Its broad frequency range of 15.1–32.5 Hz is obtained from the transition among three wells. It is also demonstrated that the tristable nonlinear oscillator will be more helpful to improve the broadband performance for harvesting vibration energy under low frequency excitations.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Erturk, A., Inman, D.J., Piezoelectric Energy Harvesting (Wiley, Chichester, 2011)CrossRefGoogle Scholar
Priya, S., Inman, D.J., Energy Harvesting Technologies (Springer, New York, 2008)Google Scholar
Tang, X., Zuo, L., J. Sound Vib. 330, 519 (2011)
Zhao, L., Tang, L., Yang, Y., Smart Mater. Struct. 22, 125003 (2013)CrossRef
Tang, L., Yang, Y., Soh, C.K., J. Intell. Mater. Syst. Struct. 21, 1867 (2010)CrossRef
Masana, R., Daqaq, M.F., J. Sound Vib. 330, 6036 (2011)CrossRef
Mann, B.P., Sims, N.D., J. Sound Vib. 319, 515 (2009)CrossRef
Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I., Nonlinear Dyn. 59, 545 (2010)CrossRef
Marinkovic, B., Koser, H., Appl. Phys. Lett. 94, 103505 (2009)CrossRef
Stanton, S.C., McGehee, C.C., Mann, B.P., Appl. Phys. Lett. 95, 174103 (2009)CrossRef
Hajati, A., Kim, S.G., Appl. Phys. Lett. 99, 083105 (2011)CrossRef
Daqaq, M.F., J. Sound Vib. 329, 3621 (2010)CrossRef
Barton, D., Burrow, S., Clare, L., ASME J. Vib. Acoust. 132, 021009 (2010)CrossRef
Harne, R.L., Wang, K.W., Smart Mater. Struct. 22, 023001 (2013)CrossRef
Erturk, A., Hoffmann, J., Inman, D.J., Appl. Phys. Lett. 94, 254102 (2009)CrossRef
Cottone, F., Vocca, H., Gammaitoni, L., Phys. Rev. Lett. 102, 080601 (2009)CrossRef
Gammaitoni, L., Neri, I., Vocca, H., Appl. Phys. Lett. 94, 164102 (2009)CrossRef
Erturk, A., Inman, D.J., J. Sound Vib. 330, 2339 (2011)CrossRef
Zhou, S., Cao, J., Erturk, A., Lin, J., Appl. Phys. Lett. 102, 173901 (2013)CrossRef
Harne, R.L., Thota, M., Wang, K.W., Appl. Phys. Lett. 102, 053903 (2013)CrossRef
Stanton, S.C., McGehee, C.C., Mann, B.P., Physica D 239, 640 (2010)CrossRef
Stanton, S.C., Owens, B.A.M., Mann, B.P., J. Sound Vib. 331, 3617 (2012)CrossRef
Arrieta, A., Hagedorn, P., Erturk, A., Inman, D.J., Appl. Phys. Lett. 97, 104102 (2010)CrossRef
Ferrari, M., Ferrari, V., Guizetti, M., Ando, B., Baglio, S., Trigona, C., Sens. Actuators A 162, 425 (2010)CrossRef
Blarigan, L.V., Danzl, P., Moehlis, J., Appl. Phys. Lett. 100, 253904 (2012)CrossRef
McInnes, C.R., Gorman, D.G., Cartmell, M.P., J. Sound Vib. 318, 655 (2008)CrossRef
Daqaq, M.F., J. Sound Vib. 330, 2554 (2011)CrossRef
Litak, G., Friswell, M., Adhikari, S., Appl. Phys. Lett. 96, 214103 (2010)CrossRef
Zhao, S., Erturk, A., Appl. Phys. Lett. 102, 103902 (2013)CrossRef
Kim, P., Seok, J., J. Sound Vib. 333, 5525 (2014)CrossRef
Cao, J., Zhou, S., Inman, D.J., Chen, Y., Nonlinear Dyn. 1 (2014), DOI: 10.1007/s11071-014-1320-6