Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-04T17:37:38.049Z Has data issue: false hasContentIssue false

Experimental study of the structure of milled diamond-containing particles obtained by the detonation method

Published online by Cambridge University Press:  15 February 2012

A. Korets*
Affiliation:
Siberian Federal University, 26, Kirensky Str., Krasnoyarsk 660074, Russian Federation
A. Krylov*
Affiliation:
Institute of Physics, Akademgorodok, Krasnoyarsk 660036, Russian Federation
E. Mironov
Affiliation:
Siberian Federal University, 26, Kirensky Str., Krasnoyarsk 660074, Russian Federation
E. Rabchevskii*
Affiliation:
Institute of Chemistry and Chemical Technology, KSC SB RAS, Krasnoyarsk, Russian Federation
Get access

Abstract

A diamond-containing material (DCM) produced by detonation was mechanically milled using KM-1 and AGO-2S mills. Experimental spectra for infrared (IR) absorption, Raman scattering and X-ray diffraction patterns (XRD) were obtained for the treated DCM samples. We compared the Raman and IR spectra for the KM-1 milled samples and concluded that the surface of the DCM particles was not uniform. The mechanical force that resulted from milling with the AGO-2S destroyed the non-diamond part of the particles and initiated irreversible physical and chemical changes in them. The destruction of the diamond grains was the consequence of these irreversible changes. It follows from the experiments that the dipole momentum of the DCM particle was caused by the presence of polar fragments of molecules. The constant dipole momentum of the particles facilitated the aggregation. Based on this, we proposed a model of a structurally inhomogeneous DCM particle.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Greiner, R.N., Phillips, D.S., Johnson, J.D., Volk, F., Nature 333, 440 (1988)CrossRef
Titov, V.M., Anisichkin, V.F., Mal’kov, I.Yu., Combust. Explos. Shock Waves 25, 117 (1989)CrossRef
Mironov, E., Koretz, A., Petrov, E., Diamond Rel. Mater. 11, 872 (2002)CrossRef
Korets, A.Ya., Mironov, E.V., Petrov, E.A., Combust. Explos. Shock Waves 39, 464 (2003)CrossRef
Krueger, A., Ozawa, M., Jarre, G., Liang, Y., Stegk, J., Li, L., Phys. Status Solidi A 204, 2881 (2007)CrossRef
Krueger, A., Kataoka, F., Ozawa, M., Fujino, T., Suzuki, Y., Aleksenskii, A.E., Vul, A.Ya., Osawa, E., Carbon 43, 1722 (2005)CrossRef
Pichot, V., Comet, M., Fousson, E., Baras, C., Senger, A., Le Normand, F., Spitzer, D., Diamond Rel. Mater. 17, 13 (2008)CrossRef
Tu, J.-S., Perevedentseva, E., Chung, P.-H., Cheng, C.L., J. Chem. Phys. 125, 174713 (2006)CrossRef
Chiang, I.W., Brinson, B.E., Smalley, R.E., Margrave, J.L., Hauge, R.H., J. Phys. Chem. B 105, 1157 (2001)CrossRef
Ten, K.A., Titov, V.M., Pruuel, E.R., Lukyanchikov, L.A., Tolochko, B.P., Zhogin, I.L., Aminov, Yu.A., Filin, V.P., Loboyko, B.G., Muzyrya, A.K., Smirnov, E.B., in Proc. of 14th Int. Detonation Symp., Idaho, 2010, p. 387
Korets, A.Ya., Krylov, A.S., Mironov, E.V., Russ. J. Phys. Chem. B 2, 485 (2007)CrossRef
Korets, A., Krylov, A., Mironov, E., Eur. Phys. J. Appl. Phys. 52, 10901 (2010)CrossRef
Badziag, P., Verwoerd, W.S., Ellis, W.P., Greiner, N.R., Nature 343, 344 (1990)CrossRef
Kupershtokh, A.L., Ershov, A.P., Combust. Explos. Shock Waves 27, 231 (1991)
Iakoubovskii, K., Baidakova, M.V., Wouters, B.H., Stesmans, A., Adriaenssens, G.J., Vul, A.Ya., Grobet, P.J., Diamond Rel. Mater. 9, 861 (2000)CrossRef